Journalists, Emotions, and the Introduction of Generative AI Chatbots: A Large-Scale Analysis of Tweets Before and After the Launch of ChatGPT
- URL: http://arxiv.org/abs/2409.08761v1
- Date: Fri, 13 Sep 2024 12:09:20 GMT
- Title: Journalists, Emotions, and the Introduction of Generative AI Chatbots: A Large-Scale Analysis of Tweets Before and After the Launch of ChatGPT
- Authors: Seth C. Lewis, David M. Markowitz, Jon Benedik Bunquin,
- Abstract summary: This study investigated the emotional responses of journalists to the release of ChatGPT at the time of its launch.
By analyzing nearly 1 million Tweets from journalists at major U.S. news outlets, we tracked changes in emotional tone and sentiment.
We found an increase in positive emotion and a more favorable tone post-launch, suggesting initial optimism toward AI's potential.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As part of a broader look at the impact of generative AI, this study investigated the emotional responses of journalists to the release of ChatGPT at the time of its launch. By analyzing nearly 1 million Tweets from journalists at major U.S. news outlets, we tracked changes in emotional tone and sentiment before and after the introduction of ChatGPT in November 2022. Using various computational and natural language processing techniques to measure emotional shifts in response to ChatGPT's release, we found an increase in positive emotion and a more favorable tone post-launch, suggesting initial optimism toward AI's potential. This research underscores the pivotal role of journalists as interpreters of technological innovation and disruption, highlighting how their emotional reactions may shape public narratives around emerging technologies. The study contributes to understanding the intersection of journalism, emotion, and AI, offering insights into the broader societal impact of generative AI tools.
Related papers
- Mapping AI Ethics Narratives: Evidence from Twitter Discourse Between 2015 and 2022 [6.518657832967228]
Twitter is selected in this paper to serve as an online public sphere for exploring discourse on AI ethics.
A research framework is proposed to demonstrate how to transform AI ethics-related discourse on Twitter into coherent and readable narratives.
arXiv Detail & Related papers (2024-06-20T09:08:44Z) - ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
Causal Emotion Entailment (CEE) aims to identify the causal utterances in a conversation that stimulate the emotions expressed in a target utterance.
Current works in CEE mainly focus on modeling semantic and emotional interactions in conversations.
We introduce a step-by-step reasoning method, Emotion-Cause Reasoning Chain (ECR-Chain), to infer the stimulus from the target emotional expressions in conversations.
arXiv Detail & Related papers (2024-05-17T15:45:08Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
We propose a new task, Personality-affected Emotion Generation, to generate emotion based on the personality given to the dialog system.
We analyze the challenges in this task, i.e., (1) heterogeneously integrating personality and emotional factors and (2) extracting multi-granularity emotional information in the dialog context.
Results suggest that by adopting our method, the emotion generation performance is improved by 13% in macro-F1 and 5% in weighted-F1 from the BERT-base model.
arXiv Detail & Related papers (2024-04-03T08:48:50Z) - The Good, The Bad, and Why: Unveiling Emotions in Generative AI [73.94035652867618]
We show that EmotionPrompt can boost the performance of AI models while EmotionAttack can hinder it.
EmotionDecode reveals that AI models can comprehend emotional stimuli akin to the mechanism of dopamine in the human brain.
arXiv Detail & Related papers (2023-12-18T11:19:45Z) - Public Attitudes Toward ChatGPT on Twitter: Sentiments, Topics, and
Occupations [1.6466986427682635]
We investigated public attitudes towards ChatGPT by applying natural language processing techniques such as sentiment analysis.
Our sentiment analysis result indicates that the overall sentiment was largely neutral to positive, and negative sentiments were decreasing over time.
Our topic model reveals that the most popular topics discussed were Education, Bard, Search Engines, OpenAI, Marketing, and Cybersecurity.
arXiv Detail & Related papers (2023-06-22T15:10:18Z) - Last Week with ChatGPT: A Weibo Study on Social Perspective Regarding ChatGPT for Education and Beyond [12.935870689618202]
This study uses ChatGPT, currently the most powerful and popular AI tool, as a representative example to analyze how the Chinese public perceives the potential of large language models (LLMs) for educational and general purposes.
The study also serves as the first effort to investigate the changes in public opinion as AI technologies become more advanced and intelligent.
arXiv Detail & Related papers (2023-06-07T10:45:02Z) - Mapping ChatGPT in Mainstream Media to Unravel Jobs and Diversity
Challenges: Early Quantitative Insights through Sentiment Analysis and Word
Frequency Analysis [0.0]
This article presents a quantitative data analysis of the early trends and sentiments revealed by conducting text mining and NLP methods.
The findings revealed in sentiment analysis, ChatGPT and artificial intelligence, were perceived more positively than negatively in the mainstream media.
This article is a critical analysis into the power structures and collusions between Big Tech and Big Media in their hegemonic exclusion of diversity and job challenges from mainstream media.
arXiv Detail & Related papers (2023-05-25T15:10:51Z) - Public Perception of Generative AI on Twitter: An Empirical Study Based
on Occupation and Usage [7.18819534653348]
This paper investigates users' perceptions of generative AI using 3M posts on Twitter from January 2019 to March 2023.
We find that people across various occupations, not just IT-related ones, show a strong interest in generative AI.
After the release of ChatGPT, people's interest in AI in general has increased dramatically.
arXiv Detail & Related papers (2023-05-16T15:30:12Z) - One Small Step for Generative AI, One Giant Leap for AGI: A Complete
Survey on ChatGPT in AIGC Era [95.2284704286191]
GPT-4 (a.k.a. ChatGPT plus) is one small step for generative AI (GAI) but one giant leap for artificial general intelligence (AGI)
Since its official release in November 2022, ChatGPT has quickly attracted numerous users with extensive media coverage.
This work is the first to survey ChatGPT with a comprehensive review of its underlying technology, applications, and challenges.
arXiv Detail & Related papers (2023-04-04T06:22:09Z) - A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to
GPT-5 All You Need? [112.12974778019304]
generative AI (AIGC, a.k.a AI-generated content) has made headlines everywhere because of its ability to analyze and create text, images, and beyond.
In the era of AI transitioning from pure analysis to creation, it is worth noting that ChatGPT, with its most recent language model GPT-4, is just a tool out of numerous AIGC tasks.
This work focuses on the technological development of various AIGC tasks based on their output type, including text, images, videos, 3D content, etc.
arXiv Detail & Related papers (2023-03-21T10:09:47Z) - When a crisis strikes: Emotion analysis and detection during COVID-19 [96.03869351276478]
We present CovidEmo, 1K tweets labeled with emotions.
We examine how well large pre-trained language models generalize across domains and crises.
arXiv Detail & Related papers (2021-07-23T04:07:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.