論文の概要: Task-Specific Data Preparation for Deep Learning to Reconstruct Structures of Interest from Severely Truncated CBCT Data
- arxiv url: http://arxiv.org/abs/2409.08800v1
- Date: Fri, 13 Sep 2024 13:08:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:29:18.283046
- Title: Task-Specific Data Preparation for Deep Learning to Reconstruct Structures of Interest from Severely Truncated CBCT Data
- Title(参考訳): CBCTデータから興味の構造を再構築する深層学習のためのタスク特化データ作成
- Authors: Yixing Huang, Fuxin Fan, Ahmed Gomaa, Andreas Maier, Rainer Fietkau, Christoph Bert, Florian Putz,
- Abstract要約: コーンビームCT(CBCT)は外科手術や放射線腫瘍学に広く用いられている。
平板検出器のサイズが限られているため、解剖学的構造は視野の限定(FOV)の外側で欠落している可能性がある。
マルチスライスCTシステムのためのFOVを拡張する深層学習法が提案されている。
FOVサイズが小さいモバイルCBCTシステムでは、プロジェクションデータが著しく切り落とされ、FOVの外側にあるすべての欠落した構造を復元することは困難である。
本研究では,ネットワークが自動的に構造に注目するタスク特化データ作成手法を提案する。
- 参考スコア(独自算出の注目度): 5.45044339307559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cone-beam computed tomography (CBCT) is widely used in interventional surgeries and radiation oncology. Due to the limited size of flat-panel detectors, anatomical structures might be missing outside the limited field-of-view (FOV), which restricts the clinical applications of CBCT systems. Recently, deep learning methods have been proposed to extend the FOV for multi-slice CT systems. However, in mobile CBCT system with a smaller FOV size, projection data is severely truncated and it is challenging for a network to restore all missing structures outside the FOV. In some applications, only certain structures outside the FOV are of interest, e.g., ribs in needle path planning for liver/lung cancer diagnosis. Therefore, a task-specific data preparation method is proposed in this work, which automatically let the network focus on structures of interest instead of all the structures. Our preliminary experiment shows that Pix2pixGAN with a conventional training has the risk to reconstruct false positive and false negative rib structures from severely truncated CBCT data, whereas Pix2pixGAN with the proposed task-specific training can reconstruct all the ribs reliably. The proposed method is promising to empower CBCT with more clinical applications.
- Abstract(参考訳): コーンビームCT(CBCT)は外科手術や放射線腫瘍学に広く用いられている。
フラットパネル検出器のサイズが限られているため、解剖学的構造はCBCTシステムの臨床応用を制限する限定視野(FOV)の外側に欠けている可能性がある。
近年,マルチスライスCTシステムにおけるFOVの拡張のためのディープラーニング手法が提案されている。
しかし, FOVサイズが小さいモバイルCBCTシステムでは, プロジェクションデータが著しく途切れており, FOVの外部にあるすべての行方不明構造を復元することは困難である。
一部の応用では、FOV以外の特定の構造、例えば、肝・肺がんの診断のための針道計画のリブのみが興味を引いている。
そこで本研究では,ネットワークがすべての構造ではなく,関心構造に自動的にフォーカスするタスク固有データ作成手法を提案する。
予備実験では,従来の訓練によるPix2pixGANはCBCTデータから偽陽性および偽陰性リブ構造を再構成するリスクがあるが,課題特異的トレーニングによるPix2pixGANはすべてのリブ構造を確実に再構築できることを示した。
提案手法はCBCTのさらなる臨床応用を期待できる。
関連論文リスト
- CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - C^2RV: Cross-Regional and Cross-View Learning for Sparse-View CBCT Reconstruction [17.54830070112685]
コーンビームCT(CBCT)は医療現場で広く用いられている画像技術である。
コーン状X線による測定により, CBCTの復元が困難になる。
本稿では,3次元空間におけるクロスリージョン学習を実現するために,明示的なマルチスケールボリューム表現を活用してC2RVを提案する。
論文 参考訳(メタデータ) (2024-06-06T09:37:56Z) - Autonomous Path Planning for Intercostal Robotic Ultrasound Imaging Using Reinforcement Learning [45.5123007404575]
胸腔鏡検査は, 皮下リブケージの音響的影が原因で, 依然として困難である。
本研究は, 内臓器病変のモニタリングを行うために, リブ間の走査経路を計画するための強化学習手法を提案する。
ランダムに定義された単一または複数の走査ターゲットを持つ未確認のCTに対して実験が実施されている。
論文 参考訳(メタデータ) (2024-04-15T16:52:53Z) - Feature-oriented Deep Learning Framework for Pulmonary Cone-beam CT
(CBCT) Enhancement with Multi-task Customized Perceptual Loss [9.59233136691378]
コーンビームCT(CBCT)は画像誘導放射線治療中に定期的に収集される。
近年, 深層学習に基づくCBCT強調法は, 人工物抑制に有望な成果を上げている。
本稿では,高画質CBCT画像から高画質CTライク画像へ変換する特徴指向ディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-01T10:09:01Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
神経減衰場を学習し,スパースビューCBCT再構成のためのSNAFを提案する。
提案手法は,入力ビューが20程度しかなく,高再生品質(30以上のPSNR)で優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-30T14:51:14Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - Body Composition Assessment with Limited Field-of-view Computed
Tomography: A Semantic Image Extension Perspective [5.373119949253442]
Field-of-view (FOV) tissue truncation beyond the lungs is common in routine lung screening Computed tomography (CT)
本研究では,入力として画像データのみを必要とする意味的画像拡張の観点から問題を定式化する。
提案した2段階法は, 完全体の推定範囲に基づいて新しいFOV境界を同定し, 脱落した領域の欠損組織を溶出する。
論文 参考訳(メタデータ) (2022-07-13T23:19:22Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。