Finite Sample Analysis of Distribution-Free Confidence Ellipsoids for Linear Regression
- URL: http://arxiv.org/abs/2409.08801v1
- Date: Fri, 13 Sep 2024 13:10:02 GMT
- Title: Finite Sample Analysis of Distribution-Free Confidence Ellipsoids for Linear Regression
- Authors: Szabolcs Szentpéteri, Balázs Csanád Csáji,
- Abstract summary: The least squares (LS) estimate is the archetypical solution of linear regression problems.
The paper studies the distribution-free Sign-Perturbed Sums (SPS) ellipsoidal outer approximation (EOA) algorithm which can construct non-asymptotically guaranteed confidence ellipsoids.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The least squares (LS) estimate is the archetypical solution of linear regression problems. The asymptotic Gaussianity of the scaled LS error is often used to construct approximate confidence ellipsoids around the LS estimate, however, for finite samples these ellipsoids do not come with strict guarantees, unless some strong assumptions are made on the noise distributions. The paper studies the distribution-free Sign-Perturbed Sums (SPS) ellipsoidal outer approximation (EOA) algorithm which can construct non-asymptotically guaranteed confidence ellipsoids under mild assumptions, such as independent and symmetric noise terms. These ellipsoids have the same center and orientation as the classical asymptotic ellipsoids, only their radii are different, which radii can be computed by convex optimization. Here, we establish high probability non-asymptotic upper bounds for the sizes of SPS outer ellipsoids for linear regression problems and show that the volumes of these ellipsoids decrease at the optimal rate. Finally, the difference between our theoretical bounds and the empirical sizes of the regions are investigated experimentally.
Related papers
- Sample Complexity of the Sign-Perturbed Sums Method [0.0]
The Sign-Perturbed Sums (SPS) method constructs exact, non-asymptotic confidence regions for the true system parameters.
We study the sample complexity of SPS for general linear regression problems.
The difference between the theoretical bounds and the empirical sizes of SPS confidence regions is investigated experimentally.
arXiv Detail & Related papers (2024-09-02T13:18:53Z) - Learning minimal volume uncertainty ellipsoids [1.6795461001108096]
We consider the problem of learning uncertainty regions for parameter estimation problems.
Under the assumption of jointly Gaussian data, we prove that the optimal ellipsoid is centered around the conditional mean.
In more practical cases, we propose a differentiable optimization approach for approximately computing the optimal ellipsoids.
arXiv Detail & Related papers (2024-05-03T19:11:35Z) - Sample Complexity of the Sign-Perturbed Sums Identification Method:
Scalar Case [0.0]
Sign-Perturbed Sum (SPS) is a powerful finite-sample system identification algorithm.
This paper studies the behaviour of SPS confidence intervals.
arXiv Detail & Related papers (2024-01-28T22:44:41Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Off-policy estimation of linear functionals: Non-asymptotic theory for
semi-parametric efficiency [59.48096489854697]
The problem of estimating a linear functional based on observational data is canonical in both the causal inference and bandit literatures.
We prove non-asymptotic upper bounds on the mean-squared error of such procedures.
We establish its instance-dependent optimality in finite samples via matching non-asymptotic local minimax lower bounds.
arXiv Detail & Related papers (2022-09-26T23:50:55Z) - A gradient estimator via L1-randomization for online zero-order
optimization with two point feedback [93.57603470949266]
We present a novel gradient estimator based on two function evaluation and randomization.
We consider two types of assumptions on the noise of the zero-order oracle: canceling noise and adversarial noise.
We provide an anytime and completely data-driven algorithm, which is adaptive to all parameters of the problem.
arXiv Detail & Related papers (2022-05-27T11:23:57Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Adversarial Estimation of Riesz Representers [21.510036777607397]
We propose an adversarial framework to estimate the Riesz representer using general function spaces.
We prove a nonasymptotic mean square rate in terms of an abstract quantity called the critical radius, then specialize it for neural networks, random forests, and reproducing kernel Hilbert spaces as leading cases.
arXiv Detail & Related papers (2020-12-30T19:46:57Z) - On the Universality of the Double Descent Peak in Ridgeless Regression [0.0]
We prove a non-asymptotic distribution-independent lower bound for the expected mean squared error caused by label noise in ridgeless linear regression.
Our lower bound generalizes a similar known result to the overized (interpolating) regime.
arXiv Detail & Related papers (2020-10-05T08:30:25Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.