Adversarial Estimation of Riesz Representers
- URL: http://arxiv.org/abs/2101.00009v3
- Date: Fri, 26 Apr 2024 15:42:37 GMT
- Title: Adversarial Estimation of Riesz Representers
- Authors: Victor Chernozhukov, Whitney Newey, Rahul Singh, Vasilis Syrgkanis,
- Abstract summary: We propose an adversarial framework to estimate the Riesz representer using general function spaces.
We prove a nonasymptotic mean square rate in terms of an abstract quantity called the critical radius, then specialize it for neural networks, random forests, and reproducing kernel Hilbert spaces as leading cases.
- Score: 21.510036777607397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many causal parameters are linear functionals of an underlying regression. The Riesz representer is a key component in the asymptotic variance of a semiparametrically estimated linear functional. We propose an adversarial framework to estimate the Riesz representer using general function spaces. We prove a nonasymptotic mean square rate in terms of an abstract quantity called the critical radius, then specialize it for neural networks, random forests, and reproducing kernel Hilbert spaces as leading cases. Our estimators are highly compatible with targeted and debiased machine learning with sample splitting; our guarantees directly verify general conditions for inference that allow mis-specification. We also use our guarantees to prove inference without sample splitting, based on stability or complexity. Our estimators achieve nominal coverage in highly nonlinear simulations where some previous methods break down. They shed new light on the heterogeneous effects of matching grants.
Related papers
- Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
We prove strong identifiability results given unknown single-node interventions without access to the intervention targets.
This is the first instance of causal identifiability from non-paired interventions for deep neural network embeddings.
arXiv Detail & Related papers (2023-06-04T02:32:12Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - On the Inconsistency of Kernel Ridgeless Regression in Fixed Dimensions [16.704246627541103]
We show that an important class of predictors, kernel machines with translation-invariant kernels, does not exhibit benign overfitting in fixed dimensions.
Our results apply to commonly used translation-invariant kernels such as Gaussian, Laplace, and Cauchy.
arXiv Detail & Related papers (2022-05-26T17:43:20Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
We develop a theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features.
We provide a complete description of the joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit.
arXiv Detail & Related papers (2022-01-31T17:44:58Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - Generalized Kernel Ridge Regression for Causal Inference with
Missing-at-Random Sample Selection [3.398662563413433]
I propose kernel ridge regression estimators for nonparametric dose response curves and semiparametric treatment effects.
For the discrete treatment case, I prove root-n consistency, Gaussian approximation, and semiparametric efficiency.
arXiv Detail & Related papers (2021-11-09T17:10:49Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves [26.880628841819004]
We prove uniform consistency with improved finite sample rates via original analysis of generalized kernel ridge regression.
We extend our main results to counterfactual distributions and to causal functions identified by front and back door criteria.
arXiv Detail & Related papers (2020-10-10T00:53:11Z) - Non-asymptotic Optimal Prediction Error for Growing-dimensional
Partially Functional Linear Models [0.951828574518325]
We show the rate-optimal upper and lower bounds of the prediction error.
An exact upper bound for the excess prediction risk is shown in a non-asymptotic form.
We derive the non-asymptotic minimax lower bound under the regularity assumption of the Kullback-Leibler divergence of the models.
arXiv Detail & Related papers (2020-09-10T08:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.