AutoIRT: Calibrating Item Response Theory Models with Automated Machine Learning
- URL: http://arxiv.org/abs/2409.08823v1
- Date: Fri, 13 Sep 2024 13:36:51 GMT
- Title: AutoIRT: Calibrating Item Response Theory Models with Automated Machine Learning
- Authors: James Sharpnack, Phoebe Mulcaire, Klinton Bicknell, Geoff LaFlair, Kevin Yancey,
- Abstract summary: We propose a multistage fitting procedure that is compatible with out-of-the-box Automated Machine Learning (AutoML) tools.
It is based on a Monte Carlo EM (MCEM) outer loop with a two stage inner loop, which trains a non-parametric AutoML grade model using item features followed by an item specific parametric model.
We show that the resulting model is typically more well, gets better predictive performance, and more accurate scores than existing methods.
- Score: 8.079755354261328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Item response theory (IRT) is a class of interpretable factor models that are widely used in computerized adaptive tests (CATs), such as language proficiency tests. Traditionally, these are fit using parametric mixed effects models on the probability of a test taker getting the correct answer to a test item (i.e., question). Neural net extensions of these models, such as BertIRT, require specialized architectures and parameter tuning. We propose a multistage fitting procedure that is compatible with out-of-the-box Automated Machine Learning (AutoML) tools. It is based on a Monte Carlo EM (MCEM) outer loop with a two stage inner loop, which trains a non-parametric AutoML grade model using item features followed by an item specific parametric model. This greatly accelerates the modeling workflow for scoring tests. We demonstrate its effectiveness by applying it to the Duolingo English Test, a high stakes, online English proficiency test. We show that the resulting model is typically more well calibrated, gets better predictive performance, and more accurate scores than existing methods (non-explanatory IRT models and explanatory IRT models like BERT-IRT). Along the way, we provide a brief survey of machine learning methods for calibration of item parameters for CATs.
Related papers
- BanditCAT and AutoIRT: Machine Learning Approaches to Computerized Adaptive Testing and Item Calibration [7.261063083251448]
We present a complete framework for calibrating and administering a robust large-scale computerized adaptive test (CAT) with a small number of responses.
We use AutoIRT, a new method that uses automated machine learning (AutoML) in combination with item response theory (IRT)
We propose the BanditCAT framework, a methodology motivated by casting the problem in the contextual bandit framework and utilizing item response theory (IRT)
arXiv Detail & Related papers (2024-10-28T13:54:10Z) - Introducing Flexible Monotone Multiple Choice Item Response Theory Models and Bit Scales [0.0]
We present a new model for multiple choice data, the monotone multiple choice (MMC) model, which we fit using autoencoders.
We demonstrate empirically that the MMC model outperforms the traditional nominal response IRT model in terms of fit.
arXiv Detail & Related papers (2024-10-02T12:33:16Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Point-TTA: Test-Time Adaptation for Point Cloud Registration Using
Multitask Meta-Auxiliary Learning [17.980649681325406]
We present Point-TTA, a novel test-time adaptation framework for point cloud registration (PCR)
Our model can adapt to unseen distributions at test-time without requiring any prior knowledge of the test data.
During training, our model is trained using a meta-auxiliary learning approach, such that the adapted model via auxiliary tasks improves the accuracy of the primary task.
arXiv Detail & Related papers (2023-08-31T06:32:11Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
We propose Adapted Multimodal BERT, a BERT-based architecture for multimodal tasks.
adapter adjusts the pretrained language model for the task at hand, while the fusion layers perform task-specific, layer-wise fusion of audio-visual information with textual BERT representations.
In our ablations we see that this approach leads to efficient models, that can outperform their fine-tuned counterparts and are robust to input noise.
arXiv Detail & Related papers (2022-12-01T17:31:42Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Taming Sparsely Activated Transformer with Stochastic Experts [76.0711573018493]
Sparsely activated models (SAMs) can easily scale to have outrageously large amounts of parameters without significant increase in computational cost.
In this paper, we propose a new expert-based model, THOR (Transformer witH StOchastic ExpeRts)
Unlike classic expert-based models, such as the Switch Transformer, experts in THOR are randomly activated for each input during training and inference.
arXiv Detail & Related papers (2021-10-08T17:15:47Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Testing Monotonicity of Machine Learning Models [0.5330240017302619]
We propose verification-based testing of monotonicity, i.e., the formal computation of test inputs on a white-box model via verification technology.
On the white-box model, the space of test inputs can be systematically explored by a directed computation of test cases.
The empirical evaluation on 90 black-box models shows verification-based testing can outperform adaptive random testing as well as property-based techniques with respect to effectiveness and efficiency.
arXiv Detail & Related papers (2020-02-27T17:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.