Predicting the Performance of Black-box LLMs through Self-Queries
- URL: http://arxiv.org/abs/2501.01558v2
- Date: Mon, 17 Feb 2025 02:41:42 GMT
- Title: Predicting the Performance of Black-box LLMs through Self-Queries
- Authors: Dylan Sam, Marc Finzi, J. Zico Kolter,
- Abstract summary: Large language models (LLMs) are increasingly relied on in AI systems, predicting when they make mistakes is crucial.
In this paper, we extract features of LLMs in a black-box manner by using follow-up prompts and taking the probabilities of different responses as representations.
We demonstrate that training a linear model on these low-dimensional representations produces reliable predictors of model performance at the instance level.
- Score: 60.87193950962585
- License:
- Abstract: As large language models (LLMs) are increasingly relied on in AI systems, predicting when they make mistakes is crucial. While a great deal of work in the field uses internal representations to interpret model behavior, these representations are inaccessible when given solely black-box access through an API. In this paper, we extract features of LLMs in a black-box manner by using follow-up prompts and taking the probabilities of different responses as representations to train reliable predictors of model behavior. We demonstrate that training a linear model on these low-dimensional representations produces reliable and generalizable predictors of model performance at the instance level (e.g., if a particular generation correctly answers a question). Remarkably, these can often outperform white-box linear predictors that operate over a model's hidden state or the full distribution over its vocabulary. In addition, we demonstrate that these extracted features can be used to evaluate more nuanced aspects of a language model's state. For instance, they can be used to distinguish between a clean version of GPT-4o-mini and a version that has been influenced via an adversarial system prompt that answers question-answering tasks incorrectly or introduces bugs into generated code. Furthermore, they can reliably distinguish between different model architectures and sizes, enabling the detection of misrepresented models provided through an API (e.g., identifying if GPT-3.5 is supplied instead of GPT-4o-mini).
Related papers
- SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models [88.29990536278167]
We introduce SPaR, a self-play framework integrating tree-search self-refinement to yield valid and comparable preference pairs free from distractions.
Our experiments show that a LLaMA3-8B model, trained over three iterations guided by SPaR, surpasses GPT-4-Turbo on the IFEval benchmark without losing general capabilities.
arXiv Detail & Related papers (2024-12-16T09:47:43Z) - DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation [18.77296551727931]
We propose DECIDER, a novel approach that leverages priors from large language models (LLMs) and vision-language models (VLMs) to detect failures in image models.
DECIDER consistently achieves state-of-the-art failure detection performance, significantly outperforming baselines in terms of the overall Matthews correlation coefficient.
arXiv Detail & Related papers (2024-08-01T07:08:11Z) - Consistency and Uncertainty: Identifying Unreliable Responses From Black-Box Vision-Language Models for Selective Visual Question Answering [46.823415680462844]
We study the possibility of selective prediction for vision-language models in a realistic, black-box setting.
We propose using the principle of textitneighborhood consistency to identify unreliable responses from a black-box vision-language model in question answering tasks.
arXiv Detail & Related papers (2024-04-16T00:28:26Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
Large Language Models (LLMs) have become a feasible solution for handling tasks in various domains.
In this paper, we introduce how to fine-tune a LLM model that can be privately deployed for content moderation.
arXiv Detail & Related papers (2023-10-05T09:09:44Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - LLM2Loss: Leveraging Language Models for Explainable Model Diagnostics [5.33024001730262]
We propose an approach that can provide semantic insights into a model's patterns of failures and biases.
We show that an ensemble of such lightweight models can be used to generate insights on the performance of the black-box model.
arXiv Detail & Related papers (2023-05-04T23:54:37Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - Predicting is not Understanding: Recognizing and Addressing
Underspecification in Machine Learning [47.651130958272155]
Underspecification refers to the existence of multiple models that are indistinguishable in their in-domain accuracy.
We formalize the concept of underspecification and propose a method to identify and partially address it.
arXiv Detail & Related papers (2022-07-06T11:20:40Z) - Recoding latent sentence representations -- Dynamic gradient-based
activation modification in RNNs [0.0]
In RNNs, encoding information in a suboptimal way can impact the quality of representations based on later elements in the sequence.
I propose an augmentation to standard RNNs in form of a gradient-based correction mechanism.
I conduct different experiments in the context of language modeling, where the impact of using such a mechanism is examined in detail.
arXiv Detail & Related papers (2021-01-03T17:54:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.