論文の概要: DX2CT: Diffusion Model for 3D CT Reconstruction from Bi or Mono-planar 2D X-ray(s)
- arxiv url: http://arxiv.org/abs/2409.08850v2
- Date: Fri, 17 Jan 2025 08:02:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:57:25.301517
- Title: DX2CT: Diffusion Model for 3D CT Reconstruction from Bi or Mono-planar 2D X-ray(s)
- Title(参考訳): DX2CT:BiまたはMono平面X線からの3次元CT再構成のための拡散モデル(DX2CT)
- Authors: Yun Su Jeong, Hye Bin Yoo, Il Yong Chun,
- Abstract要約: コンピュータ断層撮影は高解像度の医療画像を提供するが、患者を高い放射線に曝すことができる。
X線スキャナーは放射線被曝率が低いが、解像度は低い。
本稿では,2次元または単平面X線画像から3次元CTボリュームを再構成する新しい条件拡散モデルDX2CTを提案する。
- 参考スコア(独自算出の注目度): 4.813333335683417
- License:
- Abstract: Computational tomography (CT) provides high-resolution medical imaging, but it can expose patients to high radiation. X-ray scanners have low radiation exposure, but their resolutions are low. This paper proposes a new conditional diffusion model, DX2CT, that reconstructs three-dimensional (3D) CT volumes from bi or mono-planar X-ray image(s). Proposed DX2CT consists of two key components: 1) modulating feature maps extracted from two-dimensional (2D) X-ray(s) with 3D positions of CT volume using a new transformer and 2) effectively using the modulated 3D position-aware feature maps as conditions of DX2CT. In particular, the proposed transformer can provide conditions with rich information of a target CT slice to the conditional diffusion model, enabling high-quality CT reconstruction. Our experiments with the bi or mono-planar X-ray(s) benchmark datasets show that proposed DX2CT outperforms several state-of-the-art methods. Our codes and model will be available at: https://www.github.com/intyeger/DX2CT.
- Abstract(参考訳): CT(Computational tomography)は高分解能の医用画像を提供するが、患者を高放射線に曝すことができる。
X線スキャナーは放射線被曝率が低いが、解像度は低い。
本稿では,2次元または単平面X線画像から3次元CTボリュームを再構成する新しい条件拡散モデルDX2CTを提案する。
提案されたDX2CTは2つのキーコンポーネントから構成される。
1)CTボリュームの3次元位置を持つ2次元(2次元)X線から抽出した特徴マップを、新しいトランスおよび変換器を用いて変調する。
2)DX2CTの条件として3次元位置認識特徴マップを効果的に利用した。
特に,提案した変圧器は,対象CTスライスを条件拡散モデルにリッチな情報として提供し,高品質なCT再構成を可能にする。
単平面X線および単平面X線ベンチマークを用いた実験により,提案したDX2CTはいくつかの最先端手法よりも優れた性能を示した。
私たちのコードとモデルについては、https://www.github.com/intyeger/DX2CT.comで公開します。
関連論文リスト
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - DIFR3CT: Latent Diffusion for Probabilistic 3D CT Reconstruction from Few Planar X-Rays [15.83915012691264]
DIFR3CTは平面X線観測から可塑性CT体積を生成する3次元潜時拡散モデルである。
本研究は,DIFR3CTが従来の画素レベルにおいて,近年のスパースCT再建ベースラインより優れていることを示す実験である。
また,DIFR3CTはモンテカルロサンプリングによる不確実な定量化をサポートし,再現信頼性を計測する機会を提供することを示した。
論文 参考訳(メタデータ) (2024-08-27T14:58:08Z) - DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays [41.393567374399524]
条件拡散過程として超スパースX線からのCT再構成をモデル化したDiffuX2CTを提案する。
これにより、DiffuX2CTは2次元X線から3次元構造情報を復元できる構造制御可能な再構成を実現する。
コントリビューションとして,LumbarVと呼ばれる実世界の腰椎CTデータセットを新しいベンチマークとして収集し,X線からのCT再構成の臨床的意義と性能を検証した。
論文 参考訳(メタデータ) (2024-07-18T14:20:04Z) - X-ray2CTPA: Generating 3D CTPA scans from 2D X-ray conditioning [24.233484690096898]
胸部X線または胸部X線撮影(CXR)はCTスキャンと比較して限られた画像撮影を可能にする。
CTスキャンはCXRよりもコストが高く、放射線被曝も大きく、アクセス性も低い。
本研究では,2次元低コントラスト分解能X線入力から3次元高コントラストおよび空間分解能Aスキャンへのクロスモーダル変換について検討する。
論文 参考訳(メタデータ) (2024-06-23T13:53:35Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
本稿では,2つの垂直2次元拡散モデルを用いて3次元逆問題の解法を提案する。
MRI Z軸超解像, 圧縮センシングMRI, スパースCTなどの3次元医用画像再構成作業に有効である。
論文 参考訳(メタデータ) (2023-03-15T08:28:06Z) - Perspective Projection-Based 3D CT Reconstruction from Biplanar X-rays [32.98966469644061]
我々は,X線を用いた新しいCT再構成フレームワークPerX2CTを提案する。
提案手法は,各座標に対して異なる特徴の組み合わせを提供し,モデルが3次元位置に関する情報を暗黙的に取得できるようにする。
論文 参考訳(メタデータ) (2023-03-09T14:45:25Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
放射線写真は、X線を用いて患者の内部解剖を視覚化し、3D情報を2次元平面に投影する。
私たちの知る限りでは、ラジオグラフィビューの合成に関する最初の研究である。
本手法は,3次元空間におけるX線撮影の理解を得ることにより,地中骨ラベルを使わずに,X線撮影による骨抽出と骨抑制に応用できることが示唆された。
論文 参考訳(メタデータ) (2020-12-04T05:08:53Z) - End-To-End Convolutional Neural Network for 3D Reconstruction of Knee
Bones From Bi-Planar X-Ray Images [6.645111950779666]
両平面X線画像から直接膝骨を3次元再構成するためのエンドツーエンド畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2020-04-02T08:37:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。