Optimization and Generalization Guarantees for Weight Normalization
- URL: http://arxiv.org/abs/2409.08935v1
- Date: Fri, 13 Sep 2024 15:55:05 GMT
- Title: Optimization and Generalization Guarantees for Weight Normalization
- Authors: Pedro Cisneros-Velarde, Zhijie Chen, Sanmi Koyejo, Arindam Banerjee,
- Abstract summary: We provide the first theoretical characterizations of both optimization and generalization of deep WeightNorm models.
We present experimental results which illustrate how the normalization terms and other quantities of theoretical interest relate to the training of WeightNorm networks.
- Score: 19.965963460750206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weight normalization (WeightNorm) is widely used in practice for the training of deep neural networks and modern deep learning libraries have built-in implementations of it. In this paper, we provide the first theoretical characterizations of both optimization and generalization of deep WeightNorm models with smooth activation functions. For optimization, from the form of the Hessian of the loss, we note that a small Hessian of the predictor leads to a tractable analysis. Thus, we bound the spectral norm of the Hessian of WeightNorm networks and show its dependence on the network width and weight normalization terms--the latter being unique to networks without WeightNorm. Then, we use this bound to establish training convergence guarantees under suitable assumptions for gradient decent. For generalization, we use WeightNorm to get a uniform convergence based generalization bound, which is independent from the width and depends sublinearly on the depth. Finally, we present experimental results which illustrate how the normalization terms and other quantities of theoretical interest relate to the training of WeightNorm networks.
Related papers
- Weight Conditioning for Smooth Optimization of Neural Networks [28.243353447978837]
We introduce a novel normalization technique for neural network weight matrices, which we term weight conditioning.
This approach aims to narrow the gap between the smallest and largest singular values of the weight matrices, resulting in better-conditioned matrices.
Our findings indicate that our normalization method is not only competitive but also outperforms existing weight normalization techniques from the literature.
arXiv Detail & Related papers (2024-09-05T11:10:34Z) - Generalization of Scaled Deep ResNets in the Mean-Field Regime [55.77054255101667]
We investigate emphscaled ResNet in the limit of infinitely deep and wide neural networks.
Our results offer new insights into the generalization ability of deep ResNet beyond the lazy training regime.
arXiv Detail & Related papers (2024-03-14T21:48:00Z) - Convergence Analysis for Learning Orthonormal Deep Linear Neural
Networks [27.29463801531576]
We provide convergence analysis for training orthonormal deep linear neural networks.
Our results shed light on how increasing the number of hidden layers can impact the convergence speed.
arXiv Detail & Related papers (2023-11-24T18:46:54Z) - Robust Implicit Regularization via Weight Normalization [5.37610807422229]
We show that weight normalization enables a robust bias that persists even if the weights are at practically large scale.
Experiments suggest that the gains in both convergence speed and robustness of the implicit bias are improved dramatically by using weight normalization.
arXiv Detail & Related papers (2023-05-09T13:38:55Z) - Heavy-Tailed Regularization of Weight Matrices in Deep Neural Networks [8.30897399932868]
Key finding indicates that the generalization performance of a neural network is associated with the degree of heavy tails in the spectrum of its weight matrices.
We introduce a novel regularization technique, termed Heavy-Tailed Regularization, which explicitly promotes a more heavy-tailed spectrum in the weight matrix through regularization.
We empirically show that heavytailed regularization outperforms conventional regularization techniques in terms of generalization performance.
arXiv Detail & Related papers (2023-04-06T07:50:14Z) - Explicit regularization and implicit bias in deep network classifiers
trained with the square loss [2.8935588665357077]
Deep ReLU networks trained with the square loss have been observed to perform well in classification tasks.
We show that convergence to a solution with the absolute minimum norm is expected when normalization techniques are used together with Weight Decay.
arXiv Detail & Related papers (2020-12-31T21:07:56Z) - Improve Generalization and Robustness of Neural Networks via Weight
Scale Shifting Invariant Regularizations [52.493315075385325]
We show that a family of regularizers, including weight decay, is ineffective at penalizing the intrinsic norms of weights for networks with homogeneous activation functions.
We propose an improved regularizer that is invariant to weight scale shifting and thus effectively constrains the intrinsic norm of a neural network.
arXiv Detail & Related papers (2020-08-07T02:55:28Z) - Optimization Theory for ReLU Neural Networks Trained with Normalization
Layers [82.61117235807606]
The success of deep neural networks in part due to the use of normalization layers.
Our analysis shows how the introduction of normalization changes the landscape and can enable faster activation.
arXiv Detail & Related papers (2020-06-11T23:55:54Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z) - Distance-Based Regularisation of Deep Networks for Fine-Tuning [116.71288796019809]
We develop an algorithm that constrains a hypothesis class to a small sphere centred on the initial pre-trained weights.
Empirical evaluation shows that our algorithm works well, corroborating our theoretical results.
arXiv Detail & Related papers (2020-02-19T16:00:47Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
We advance the understanding of the relations between the network's architecture and its generalizability from the compression perspective.
We propose a series of intuitive, data-dependent and easily-measurable properties that tightly characterize the compressibility and generalizability of neural networks.
arXiv Detail & Related papers (2020-01-14T22:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.