論文の概要: Average-Reward Maximum Entropy Reinforcement Learning for Underactuated Double Pendulum Tasks
- arxiv url: http://arxiv.org/abs/2409.08938v1
- Date: Fri, 13 Sep 2024 15:56:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 15:59:55.420328
- Title: Average-Reward Maximum Entropy Reinforcement Learning for Underactuated Double Pendulum Tasks
- Title(参考訳): 不安定な二重振り子タスクに対する平均逆最大エントロピー強化学習
- Authors: Jean Seong Bjorn Choe, Bumkyu Choi, Jong-kook Kim,
- Abstract要約: 本報告では,IROS 2024におけるAIオリンピック競技のために開発されたアクロボットとペンデュボットの起動と安定化の課題に対する解決策を提示する。
提案手法では, 平均回帰RLと最大エントロピーRLを組み合わせたモデルフリー強化学習(RL)アルゴリズム, Average-Reward Entropy Advantage Policy Optimization (AR-EAPO) を用いる。
- 参考スコア(独自算出の注目度): 0.24578723416255752
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This report presents a solution for the swing-up and stabilisation tasks of the acrobot and the pendubot, developed for the AI Olympics competition at IROS 2024. Our approach employs the Average-Reward Entropy Advantage Policy Optimization (AR-EAPO), a model-free reinforcement learning (RL) algorithm that combines average-reward RL and maximum entropy RL. Results demonstrate that our controller achieves improved performance and robustness scores compared to established baseline methods in both the acrobot and pendubot scenarios, without the need for a heavily engineered reward function or system model. The current results are applicable exclusively to the simulation stage setup.
- Abstract(参考訳): 本報告では,IROS 2024におけるAIオリンピック競技のために開発されたアクロボットとペンデュボットの起動と安定化の課題に対する解決策を提示する。
提案手法では, 平均回帰RLと最大エントロピーRLを組み合わせたモデルフリー強化学習(RL)アルゴリズム, Average-Reward Entropy Advantage Policy Optimization (AR-EAPO) を用いる。
以上の結果から,アクロボットとペンデュボットの両シナリオにおいて,高機能な報酬関数やシステムモデルを必要とせずに,確立されたベースライン手法と比較して性能とロバスト性を向上できることが示唆された。
現在の結果はシミュレーションステージの設定にのみ適用できる。
関連論文リスト
- Comparison of Model Predictive Control and Proximal Policy Optimization for a 1-DOF Helicopter System [0.7499722271664147]
本研究は,Quanser Aero 2システムに適用された深層強化学習(DRL)アルゴリズムであるモデル予測制御(MPC)とPPOの比較分析を行う。
PPOは上昇時間と適応性に優れており、迅速な応答と適応性を必要とするアプリケーションには有望なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:35:34Z) - Bigger, Regularized, Optimistic: scaling for compute and sample-efficient continuous control [1.1404490220482764]
BROは、犬とヒューマノイドのタスクにおいて、ほぼ最適ポリシーを達成するためのモデルフリーのアルゴリズムである。
BROは最先端の結果を達成し、主要なモデルベースおよびモデルフリーアルゴリズムを著しく上回っている。
BROは、非常に難しい犬とヒューマノイドのタスクにおいて、ほぼ最適なポリシーを達成した最初のモデルなしアルゴリズムである。
論文 参考訳(メタデータ) (2024-05-25T09:53:25Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
本稿では,この問題を解決するために,事前制約に基づくリワードモデル(PCRM)のトレーニング手法を提案する。
PCRMは、前回の制約、特に各比較ペアの出力間の長さ比とコサイン類似性を、最適化の規模を調節しスコアマージンを制御するための報酬モデルトレーニングに組み入れている。
実験結果から,PCRMは報酬スコアのスケーリングを効果的に抑制することによりアライメント性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-01T07:49:11Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - WARM: On the Benefits of Weight Averaged Reward Models [63.08179139233774]
Weight Averaged Reward Models (WARM) を提案する。
最良N法とRL法を用いた要約タスクの実験は、WARMがLLM予測の全体的な品質とアライメントを改善することを示す。
論文 参考訳(メタデータ) (2024-01-22T18:27:08Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
本稿では,基本言語モデルと人間の監督を最小限に整合させる新しいアプローチ,すなわちSALMONを提案する。
私たちはDromedary-2という名のAIアシスタントを開発しており、コンテキスト内学習には6つの例と31の人間定義原則しかありません。
論文 参考訳(メタデータ) (2023-10-09T17:56:53Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Model Predictive Actor-Critic: Accelerating Robot Skill Acquisition with
Deep Reinforcement Learning [42.525696463089794]
Model Predictive Actor-Critic (MoPAC)は、モデル予測ロールアウトとポリシー最適化を組み合わせてモデルバイアスを軽減するハイブリッドモデルベース/モデルフリーメソッドである。
MoPACは最適なスキル学習を近似誤差まで保証し、環境との物理的相互作用を減らす。
論文 参考訳(メタデータ) (2021-03-25T13:50:24Z) - Pareto Deterministic Policy Gradients and Its Application in 5G Massive
MIMO Networks [32.099949375036495]
我々は,強化学習(RL)アプローチを用いて,セルロードバランスとネットワークスループットを協調的に最適化することを検討する。
RLの背景にある理論的根拠は、ユーザモビリティとネットワークのダイナミクスを解析的にモデル化することの難しさを回避することである。
この共同最適化を実現するために、ベクトル報酬をRL値ネットワークに統合し、別々のポリシーネットワークを介してRLアクションを実行する。
論文 参考訳(メタデータ) (2020-12-02T15:35:35Z) - Robust Reinforcement Learning using Adversarial Populations [118.73193330231163]
強化学習(Reinforcement Learning, RL)は、コントローラ設計に有効なツールであるが、堅牢性の問題に対処できる。
一つの逆数を使うことは、逆数の標準的なパラメトリゼーションの下での動的変動に一貫して堅牢性をもたらすわけではないことを示す。
本稿では,ロバスト RL の定式化に対する人口ベース増進法を提案する。
論文 参考訳(メタデータ) (2020-08-04T20:57:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。