Deep Reinforcement Learning-Based User Scheduling for Collaborative Perception
- URL: http://arxiv.org/abs/2502.10456v1
- Date: Wed, 12 Feb 2025 04:45:00 GMT
- Title: Deep Reinforcement Learning-Based User Scheduling for Collaborative Perception
- Authors: Yandi Liu, Guowei Liu, Le Liang, Hao Ye, Chongtao Guo, Shi Jin,
- Abstract summary: Collaborative perception is envisioned to improve perceptual accuracy by using vehicle-to-everything (V2X) communication.
Due to limited communication resources, it is impractical for all units to transmit sensing data such as point clouds or high-definition video.
We propose a deep reinforcement learning-based V2X user scheduling algorithm for collaborative perception.
- Score: 24.300126250046894
- License:
- Abstract: Stand-alone perception systems in autonomous driving suffer from limited sensing ranges and occlusions at extended distances, potentially resulting in catastrophic outcomes. To address this issue, collaborative perception is envisioned to improve perceptual accuracy by using vehicle-to-everything (V2X) communication to enable collaboration among connected and autonomous vehicles and roadside units. However, due to limited communication resources, it is impractical for all units to transmit sensing data such as point clouds or high-definition video. As a result, it is essential to optimize the scheduling of communication links to ensure efficient spectrum utilization for the exchange of perceptual data. In this work, we propose a deep reinforcement learning-based V2X user scheduling algorithm for collaborative perception. Given the challenges in acquiring perceptual labels, we reformulate the conventional label-dependent objective into a label-free goal, based on characteristics of 3D object detection. Incorporating both channel state information (CSI) and semantic information, we develop a double deep Q-Network (DDQN)-based user scheduling framework for collaborative perception, named SchedCP. Simulation results verify the effectiveness and robustness of SchedCP compared with traditional V2X scheduling methods. Finally, we present a case study to illustrate how our proposed algorithm adaptively modifies the scheduling decisions by taking both instantaneous CSI and perceptual semantics into account.
Related papers
- Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - SmartCooper: Vehicular Collaborative Perception with Adaptive Fusion and
Judger Mechanism [23.824400533836535]
We introduce SmartCooper, an adaptive collaborative perception framework that incorporates communication optimization and a judger mechanism.
Our results demonstrate a substantial reduction in communication costs by 23.10% compared to the non-judger scheme.
arXiv Detail & Related papers (2024-02-01T04:15:39Z) - MASS: Mobility-Aware Sensor Scheduling of Cooperative Perception for
Connected Automated Driving [19.66714697653504]
A new paradigm, Cooperative Perception (CP), comes to the rescue by sharing sensor data from a cooperative vehicle (CoV)
Existing methods rely on the exchange of meta-information, such as visibility maps, to predict the perception gains from nearby vehicles.
We propose a new approach, learning while scheduling, for distributed scheduling of CP.
The proposed MASS algorithm achieves the best average perception gain and improves recall by up to 4.2 percentage points compared to other learning-based algorithms.
arXiv Detail & Related papers (2023-02-25T09:03:05Z) - Task-Oriented Over-the-Air Computation for Multi-Device Edge AI [57.50247872182593]
6G networks for supporting edge AI features task-oriented techniques that focus on effective and efficient execution of AI task.
Task-oriented over-the-air computation (AirComp) scheme is proposed in this paper for multi-device split-inference system.
arXiv Detail & Related papers (2022-11-02T16:35:14Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Online V2X Scheduling for Raw-Level Cooperative Perception [21.099819062731463]
Cooperative perception of connected vehicles comes to the rescue when the field of view restricts stand-alone intelligence.
We present a model of raw-level cooperative perception and formulate the energy minimization problem of sensor sharing scheduling.
We propose an online learning-based algorithm with logarithmic performance loss, achieving a decent trade-off between exploration and exploitation.
arXiv Detail & Related papers (2022-02-12T15:16:45Z) - Cross-modal Consensus Network for Weakly Supervised Temporal Action
Localization [74.34699679568818]
Weakly supervised temporal action localization (WS-TAL) is a challenging task that aims to localize action instances in the given video with video-level categorical supervision.
We propose a cross-modal consensus network (CO2-Net) to tackle this problem.
arXiv Detail & Related papers (2021-07-27T04:21:01Z) - Accelerating Federated Edge Learning via Optimized Probabilistic Device
Scheduling [57.271494741212166]
This paper formulates and solves the communication time minimization problem.
It is found that the optimized policy gradually turns its priority from suppressing the remaining communication rounds to reducing per-round latency as the training process evolves.
The effectiveness of the proposed scheme is demonstrated via a use case on collaborative 3D objective detection in autonomous driving.
arXiv Detail & Related papers (2021-07-24T11:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.