論文の概要: FiAt-Net: Detecting Fibroatheroma Plaque Cap in 3D Intravascular OCT Images
- arxiv url: http://arxiv.org/abs/2409.09188v1
- Date: Fri, 13 Sep 2024 20:50:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 21:59:04.699554
- Title: FiAt-Net: Detecting Fibroatheroma Plaque Cap in 3D Intravascular OCT Images
- Title(参考訳): FiAt-Net : 3次元血管内CT画像における線維腺腫プラークキャップの検出
- Authors: Yaopeng Peng, Zhi Chen, Andreas Wahle, Tomas Kovarnik, Milan Sonk, Danny Z. Chen,
- Abstract要約: 冠状動脈疾患の主な徴候は、冠動脈閉塞や心臓発作の原因となるフィブロアセロマトーデス・プラークの発達である。
本稿では, 血管内光コヒーレンス断層撮影(IV OCT)画像において, 深層学習に基づく新しいアプローチであるFiAt-Net(FiAt-Net)について報告する。
われわれのFiAt-Netは,IV OCT画像中のFAキャップを高精度に検出し,3次元IV OCT冠動脈画像データセット上で高い性能を示した。
- 参考スコア(独自算出の注目度): 17.340769351344683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The key manifestation of coronary artery disease (CAD) is development of fibroatheromatous plaque, the cap of which may rupture and subsequently lead to coronary artery blocking and heart attack. As such, quantitative analysis of coronary plaque, its plaque cap, and consequently the cap's likelihood to rupture are of critical importance when assessing a risk of cardiovascular events. This paper reports a new deep learning based approach, called FiAt-Net, for detecting angular extent of fibroatheroma (FA) and segmenting its cap in 3D intravascular optical coherence tomography (IVOCT) images. IVOCT 2D image frames are first associated with distinct clusters and data from each cluster are used for model training. As plaque is typically focal and thus unevenly distributed, a binary partitioning method is employed to identify FA plaque areas to focus on to mitigate the data imbalance issue. Additional image representations (called auxiliary images) are generated to capture IVOCT intensity changes to help distinguish FA and non-FA areas on the coronary wall. Information in varying scales is derived from the original IVOCT and auxiliary images, and a multi-head self-attention mechanism is employed to fuse such information. Our FiAt-Net achieved high performance on a 3D IVOCT coronary image dataset, demonstrating its effectiveness in accurately detecting FA cap in IVOCT images.
- Abstract(参考訳): 冠状動脈疾患 (CAD) の徴候は, 皮弁が破裂し, 冠動脈閉塞, 心臓発作につながるフィブロナセロマトーデス・プラークの発達である。
そのため,冠状プラーク,プラークキャップの定量的解析は,心血管イベントのリスクを評価する上で重要である。
本稿では3次元血管内光コヒーレンストモグラフィー(IVOCT)画像において,FIAt-Netとよばれる新しい深層学習アプローチを報告する。
IVOCT 2D画像フレームはまず異なるクラスタに関連付けられ、各クラスタのデータはモデルトレーニングに使用される。
通常、プラークは焦点が集中しており、不均一に分散するため、データ不均衡問題を緩和するためにFAプラーク領域を特定するためにバイナリパーティショニング法が用いられる。
追加の画像表現(補助画像と呼ばれる)が生成され、冠壁のFA領域と非FA領域を区別するのに役立つ。
様々なスケールの情報が、元のIOVCTと補助画像から導き出され、そのような情報を融合するためにマルチヘッド自己認識機構が使用される。
われわれのFiAt-Netは3D IVOCT 冠動脈画像データセット上で高い性能を示し,IVOCT 画像中の FA キャップを正確に検出する効果を示した。
関連論文リスト
- AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
CCTA画像を用いた冠動脈セグメンテーションのための注意誘導型3Dディープネットワーク(AGFA-Net)を提案する。
AGFA-Netは注意機構と機能改善モジュールを活用して、有能な特徴を捉え、セグメンテーションの精度を高める。
1000個のCCTAスキャンからなるデータセットの評価はAGFA-Netの優れた性能を示し、平均Dice係数は86.74%、ハウスドルフ距離は0.23mmである。
論文 参考訳(メタデータ) (2024-06-13T01:04:47Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - O2CTA: Introducing Annotations from OCT to CCTA in Coronary Plaque
Analysis [19.099761377777412]
冠動脈造影(CCTA)は動脈造影や狭窄度判定に広く用いられている。
侵襲的光コヒーレンス断層撮影(OCT)により、医師のトラブルを伴わずに解決することができるが、高いコストと潜在的なリスクを患者にもたらすことができる。
我々は,O2CTA問題に対処する手法を提案する。CCTAスキャンはまず,意味内容の観点からOCT画像と一致するマルチ平面再構成(MPR)画像に再構成される。
OCTの動脈セグメントは手動でラベル付けされ、提案したアライメント戦略を介してMPR画像の動脈全体と空間的に整列する。
論文 参考訳(メタデータ) (2023-03-11T09:40:05Z) - Morphology-based non-rigid registration of coronary computed tomography and intravascular images through virtual catheter path optimization [0.2631367460046713]
血管内画像の剛性および非剛性マッチングのための形態学的枠組みをCCTA画像に提示した。
本フレームワークは,大規模なマルチモーダル臨床研究を行うために必要な手作業を削減する。
論文 参考訳(メタデータ) (2022-12-30T21:48:32Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - ImageTBAD: A 3D Computed Tomography Angiography Image Dataset for
Automatic Segmentation of Type-B Aortic Dissection [18.664810667693978]
B型大動脈解離 (TBAD) は, 年々発症が増加し, 重症度が低下する心血管疾患の1つである。
現在,TBADの診断と予後にはCTA(Computed tomography angiography)が広く採用されている。
本稿では, TL, FL, FLのアノテーションを付加した3次元CT(CTA)画像データセットであるImageTBADを提案する。
論文 参考訳(メタデータ) (2021-09-01T13:21:12Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
光音響トモグラフィ(PAT)は、形態学的および機能的組織特性の両方を解決することができる新しいイメージング技術である。
現在の欠点は、従来の2Dプローブによって提供される視野の制限である。
本研究では,外部追跡システムを必要としないPATデータの3次元再構成手法を提案する。
論文 参考訳(メタデータ) (2020-11-10T09:27:56Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
網膜層厚の同定は、患者ごとに個別に行う重要な課題である。
自動セグメンテーションモデルの構築は,医用画像処理分野において重要な課題となっている。
我々は、秩序に制約された3D OCT網膜細胞層セグメンテーションのための新しい、純粋にデータ駆動型テキスト幾何学的アプローチを提案する。
論文 参考訳(メタデータ) (2020-09-10T01:57:53Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。