Rational-WENO: A lightweight, physically-consistent three-point weighted essentially non-oscillatory scheme
- URL: http://arxiv.org/abs/2409.09217v1
- Date: Fri, 13 Sep 2024 22:11:03 GMT
- Title: Rational-WENO: A lightweight, physically-consistent three-point weighted essentially non-oscillatory scheme
- Authors: Shantanu Shahane, Sheide Chammas, Deniz A. Bezgin, Aaron B. Buhendwa, Steffen J. Schmidt, Nikolaus A. Adams, Spencer H. Bryngelson, Yi-Fan Chen, Qing Wang, Fei Sha, Leonardo Zepeda-Núñez,
- Abstract summary: We employ a rational neural network to accurately estimate the local smoothness of the solution.
This approach achieves a granular reconstruction with significantly reduced dissipation.
We demonstrate the effectiveness of our approach on several one-, two-, and three-dimensional fluid flow problems.
- Score: 14.120671138290104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional WENO3 methods are known to be highly dissipative at lower resolutions, introducing significant errors in the pre-asymptotic regime. In this paper, we employ a rational neural network to accurately estimate the local smoothness of the solution, dynamically adapting the stencil weights based on local solution features. As rational neural networks can represent fast transitions between smooth and sharp regimes, this approach achieves a granular reconstruction with significantly reduced dissipation, improving the accuracy of the simulation. The network is trained offline on a carefully chosen dataset of analytical functions, bypassing the need for differentiable solvers. We also propose a robust model selection criterion based on estimates of the interpolation's convergence order on a set of test functions, which correlates better with the model performance in downstream tasks. We demonstrate the effectiveness of our approach on several one-, two-, and three-dimensional fluid flow problems: our scheme generalizes across grid resolutions while handling smooth and discontinuous solutions. In most cases, our rational network-based scheme achieves higher accuracy than conventional WENO3 with the same stencil size, and in a few of them, it achieves accuracy comparable to WENO5, which uses a larger stencil.
Related papers
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
We propose an algorithm capable of identifying and eliminating irrelevant layers of a neural network during the early stages of training.
We employ a structure using residual connections around nonlinear network sections that allow the flow of information through the network once a nonlinear section is pruned.
arXiv Detail & Related papers (2024-06-06T23:19:57Z) - Soft Merging: A Flexible and Robust Soft Model Merging Approach for
Enhanced Neural Network Performance [6.599368083393398]
Gradient (SGD) is often limited to converging local optima to improve model performance.
em soft merging method minimizes the obtained local optima models in undesirable results.
Experiments underscore the effectiveness of the merged networks.
arXiv Detail & Related papers (2023-09-21T17:07:31Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Standard Deviation-Based Quantization for Deep Neural Networks [17.495852096822894]
Quantization of deep neural networks is a promising approach that reduces the inference cost.
We propose a new framework to learn the quantization intervals (discrete values) using the knowledge of the network's weight and activation distributions.
Our scheme simultaneously prunes the network's parameters and allows us to flexibly adjust the pruning ratio during the quantization process.
arXiv Detail & Related papers (2022-02-24T23:33:47Z) - Modeling Design and Control Problems Involving Neural Network Surrogates [1.1602089225841632]
We consider nonlinear optimization problems that involve surrogate models represented by neural networks.
We show how to directly embed neural network evaluation into optimization models, highlight a difficulty with this approach that can prevent convergence.
We present two alternative formulations of these problems in the specific case of feedforward neural networks with ReLU activation.
arXiv Detail & Related papers (2021-11-20T01:09:15Z) - Self-Supervised Multi-Frame Monocular Scene Flow [61.588808225321735]
We introduce a multi-frame monocular scene flow network based on self-supervised learning.
We observe state-of-the-art accuracy among monocular scene flow methods based on self-supervised learning.
arXiv Detail & Related papers (2021-05-05T17:49:55Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Neural-iLQR: A Learning-Aided Shooting Method for Trajectory
Optimization [17.25824905485415]
We present Neural-iLQR, a learning-aided shooting method over the unconstrained control space.
It is shown to outperform the conventional iLQR significantly in the presence of inaccuracies in system models.
arXiv Detail & Related papers (2020-11-21T07:17:28Z) - Optimizing Mode Connectivity via Neuron Alignment [84.26606622400423]
Empirically, the local minima of loss functions can be connected by a learned curve in model space along which the loss remains nearly constant.
We propose a more general framework to investigate effect of symmetry on landscape connectivity by accounting for the weight permutations of networks being connected.
arXiv Detail & Related papers (2020-09-05T02:25:23Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.