論文の概要: Cross-Entropy Optimization for Hyperparameter Optimization in Stochastic Gradient-based Approaches to Train Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2409.09240v1
- Date: Sat, 14 Sep 2024 00:39:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 21:49:17.239113
- Title: Cross-Entropy Optimization for Hyperparameter Optimization in Stochastic Gradient-based Approaches to Train Deep Neural Networks
- Title(参考訳): 確率勾配に基づく深部ニューラルネットワーク学習手法における超パラメータ最適化のためのクロスエントロピー最適化
- Authors: Kevin Li, Fulu Li,
- Abstract要約: 学習アルゴリズムのハイパーパラメータ最適化のためのクロスエントロピー最適化法を提案する。
提案手法は,ディープラーニングにおける他の最適化問題にも適用可能である。
- 参考スコア(独自算出の注目度): 2.1046873879077794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a cross-entropy optimization method for hyperparameter optimization in stochastic gradient-based approaches to train deep neural networks. The value of a hyperparameter of a learning algorithm often has great impact on the performance of a model such as the convergence speed, the generalization performance metrics, etc. While in some cases the hyperparameters of a learning algorithm can be part of learning parameters, in other scenarios the hyperparameters of a stochastic optimization algorithm such as Adam [5] and its variants are either fixed as a constant or are kept changing in a monotonic way over time. We give an in-depth analysis of the presented method in the framework of expectation maximization (EM). The presented algorithm of cross-entropy optimization for hyperparameter optimization of a learning algorithm (CEHPO) can be equally applicable to other areas of optimization problems in deep learning. We hope that the presented methods can provide different perspectives and offer some insights for optimization problems in different areas of machine learning and beyond.
- Abstract(参考訳): 本稿では,確率勾配に基づく深層ニューラルネットワークの学習手法におけるハイパーパラメータ最適化のためのクロスエントロピー最適化手法を提案する。
学習アルゴリズムのハイパーパラメータの値は、収束速度や一般化性能指標などのモデルの性能に大きな影響を与えることが多い。
学習アルゴリズムのハイパーパラメータは学習パラメータの一部である場合もあるが、Adam [5] のような確率最適化アルゴリズムのハイパーパラメータは定数として固定されるか、時間とともに単調な方法で変化し続ける。
予測最大化(EM)の枠組みにおいて,提案手法の詳細な解析を行う。
学習アルゴリズム(CEHPO)のハイパーパラメータ最適化のためのクロスエントロピー最適化のアルゴリズムは、ディープラーニングにおける他の最適化問題にも等しく適用可能である。
提案した手法がさまざまな視点を提供し、機械学習のさまざまな領域における最適化問題に対するいくつかの洞察を提供することを期待しています。
関連論文リスト
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Probabilistic tensor optimization of quantum circuits for the
max-$k$-cut problem [0.0]
本稿では,変分量子アルゴリズムにおけるパラメータ化回路の最適化手法を提案する。
本稿では,量子近似最適化アルゴリズム (QAOA) を最大$k$-cut問題に適用した例について述べる。
論文 参考訳(メタデータ) (2023-10-16T12:56:22Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - A theoretical and empirical study of new adaptive algorithms with
additional momentum steps and shifted updates for stochastic non-convex
optimization [0.0]
適応最適化アルゴリズムは学習分野の鍵となる柱を表現していると考えられる。
本稿では,異なる非滑らかな目的問題に対する適応運動量法を提案する。
論文 参考訳(メタデータ) (2021-10-16T09:47:57Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
ニューラルネットワーク(rnn)におけるハイパーパラメータ最適化とパラメータ学習の類似性を活用した。
RNNのための学習済みのオンライン学習アルゴリズムのファミリーを適応させ、ハイパーパラメータとネットワークパラメータを同時に調整します。
この手順は、通常の方法に比べて、ウォールクロック時間のほんの少しで、体系的に一般化性能が向上する。
論文 参考訳(メタデータ) (2021-02-15T19:36:18Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
我々は、一般的に使用される最適化アルゴリズムの幅広いクラスについて考察する。
その結果、ニューラルネットワークの収束挙動を利用することができる。
このアプローチは他の最適化アルゴリズムやネットワーク理論にも拡張できると考えています。
論文 参考訳(メタデータ) (2020-10-25T17:10:22Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Iterative Surrogate Model Optimization (ISMO): An active learning
algorithm for PDE constrained optimization with deep neural networks [14.380314061763508]
反復代理モデル最適化(ISMO)と呼ばれる新しい能動学習アルゴリズムを提案する。
このアルゴリズムはディープニューラルネットワークに基づいており、その重要な特徴は、ディープニューラルネットワークと基礎となる標準最適化アルゴリズムの間のフィードバックループを通じて、トレーニングデータの反復的な選択である。
論文 参考訳(メタデータ) (2020-08-13T07:31:07Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - On Hyper-parameter Tuning for Stochastic Optimization Algorithms [28.88646928299302]
本稿では,強化学習に基づく最適化アルゴリズムのハイパーパラメータをチューニングするための,最初のアルゴリズムフレームワークを提案する。
提案フレームワークはアルゴリズムにおけるハイパーパラメータチューニングの標準ツールとして利用できる。
論文 参考訳(メタデータ) (2020-03-04T12:29:12Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。