論文の概要: Analyzing Correlations Between Intrinsic and Extrinsic Bias Metrics of Static Word Embeddings With Their Measuring Biases Aligned
- arxiv url: http://arxiv.org/abs/2409.09260v1
- Date: Sat, 14 Sep 2024 02:13:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 21:38:57.153594
- Title: Analyzing Correlations Between Intrinsic and Extrinsic Bias Metrics of Static Word Embeddings With Their Measuring Biases Aligned
- Title(参考訳): 静的単語埋め込みにおける内因性バイアス量と外因性バイアス量と測定バイアスの相関性の解析
- Authors: Taisei Katô, Yusuke Miyao,
- Abstract要約: 本研究では,自然言語処理(NLP)システムがバイアス行動を示すかどうかを予測するために,静的単語埋め込みの固有バイアス指標の有用性について検討する。
単語埋め込みは、実際のベクトルを通して単語の意味を表現する基本的なNLP技術の1つであり、問題として、ステレオタイプのような社会的バイアスも学習する。
- 参考スコア(独自算出の注目度): 8.673018064714547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We examine the abilities of intrinsic bias metrics of static word embeddings to predict whether Natural Language Processing (NLP) systems exhibit biased behavior. A word embedding is one of the fundamental NLP technologies that represents the meanings of words through real vectors, and problematically, it also learns social biases such as stereotypes. An intrinsic bias metric measures bias by examining a characteristic of vectors, while an extrinsic bias metric checks whether an NLP system trained with a word embedding is biased. A previous study found that a common intrinsic bias metric usually does not correlate with extrinsic bias metrics. However, the intrinsic and extrinsic bias metrics did not measure the same bias in most cases, which makes us question whether the lack of correlation is genuine. In this paper, we extract characteristic words from datasets of extrinsic bias metrics and analyze correlations with intrinsic bias metrics with those words to ensure both metrics measure the same bias. We observed moderate to high correlations with some extrinsic bias metrics but little to no correlations with the others. This result suggests that intrinsic bias metrics can predict biased behavior in particular settings but not in others. Experiment codes are available at GitHub.
- Abstract(参考訳): 本研究では,自然言語処理(NLP)システムがバイアス行動を示すかどうかを予測するために,静的単語埋め込みの固有バイアス指標の有用性について検討する。
単語埋め込みは、実際のベクトルを通して単語の意味を表現する基本的なNLP技術の1つであり、問題として、ステレオタイプのような社会的バイアスも学習する。
固有バイアスメトリックはベクトルの特性を調べることによってバイアスを測定する一方、外在バイアスメトリックは単語埋め込みで訓練されたNLPシステムがバイアスを受けるかどうかを検査する。
以前の研究では、共通の内在バイアス指標は、通常、外在バイアス指標と相関しないことがわかった。
しかし, 内因性および外因性バイアスの指標は, ほとんどの場合同じバイアスを計測しなかったため, 相関の欠如が真であるかどうかが疑問視される。
本稿では,外因性バイアス指標のデータセットから特徴語を抽出し,それらの単語と内因性バイアス指標との相関関係を分析し,両指標が同一バイアスを測定することを保証する。
内因性バイアスの指標と中程度から高い相関性を示したが,他の相関性はほとんど認められなかった。
この結果は、固有のバイアス指標が特定の設定においてバイアスの振る舞いを予測できるが、他の設定では予測できないことを示唆している。
実験コードはGitHubで公開されている。
関連論文リスト
- Revisiting the Dataset Bias Problem from a Statistical Perspective [72.94990819287551]
統計的観点から「データセットバイアス」問題を考察する。
問題の主な原因は、クラス属性 u と非クラス属性 b の強い相関関係である。
本稿では,各試料nの目的をフラクタル1p(u_n|b_n)で重み付けするか,その試料をフラクタル1p(u_n|b_n)に比例してサンプリングすることにより,データセットバイアスを軽減することを提案する。
論文 参考訳(メタデータ) (2024-02-05T22:58:06Z) - How Gender Debiasing Affects Internal Model Representations, and Why It
Matters [26.993273464725995]
内因性バイアスは、標準のWEAT測定値よりもデバイアスの指標として優れていることを示す。
当社のフレームワークは,NLPモデルのバイアスを包括的に把握し,より情報のある方法でNLPシステムのデプロイに適用することができる。
論文 参考訳(メタデータ) (2022-04-14T08:54:15Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
埋め込みにおけるセマンティックバイアスのための新しいバイアススコアであるPetを紹介した。
本研究は,下水道作業における意味バイアスを測定し,社会的バイアスの潜在的な原因を特定することができることを示す。
論文 参考訳(メタデータ) (2022-03-28T09:28:13Z) - On the Intrinsic and Extrinsic Fairness Evaluation Metrics for
Contextualized Language Representations [74.70957445600936]
様々な自然言語処理タスクの公平度を測定するために、複数のメトリクスが導入された。
これらの指標は,(1)下流アプリケーションにおけるフェアネスを評価する遠因性指標と,(2)上流言語表現モデルにおけるフェアネスを推定する遠因性指標の2つのカテゴリに大別することができる。
論文 参考訳(メタデータ) (2022-03-25T22:17:43Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Evaluating Metrics for Bias in Word Embeddings [44.14639209617701]
我々は、過去の研究の考えに基づいてバイアス定義を定式化し、バイアスメトリクスの条件を導出する。
そこで我々は,既存のメトリクスの欠点に対処する新しい計量であるhetを提案し,その振る舞いを数学的に証明する。
論文 参考訳(メタデータ) (2021-11-15T16:07:15Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z) - Intrinsic Bias Metrics Do Not Correlate with Application Bias [12.588713044749179]
本研究は, 測定容易な内在的指標が実世界の外在的指標とよく相関するかどうかを検討する。
異なるタスクと実験条件をカバーする数百のトレーニングモデルに対して,内在バイアスと外部バイアスの両方を測定した。
埋め込みスペースのデビア化の取り組みは、常に下流モデルバイアスの測定とペアリングされることを推奨し、追加のチャレンジセットと注釈付きテストデータの作成を通じて下流測定をより実現可能にするためのコミュニティの努力を高めることを提案します。
論文 参考訳(メタデータ) (2020-12-31T18:59:44Z) - Detecting Emergent Intersectional Biases: Contextualized Word Embeddings
Contain a Distribution of Human-like Biases [10.713568409205077]
最先端のニューラルネットワークモデルは、単語が現れるコンテキストに依存する動的単語埋め込みを生成する。
本稿では、ニューラルネットワークモデルにおける全体的なバイアスの大きさを要約できる、コンテキスト適応型埋め込みアソシエーションテスト(CEAT)を紹介する。
静的な単語埋め込みから交差点バイアスと緊急交差点バイアスを自動的に識別する2つの方法,IBD (Intersectional Bias Detection) とEmergent Intersectional Bias Detection (EIBD) を開発した。
論文 参考訳(メタデータ) (2020-06-06T19:49:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。