LACOSTE: Exploiting stereo and temporal contexts for surgical instrument segmentation
- URL: http://arxiv.org/abs/2409.09360v3
- Date: Tue, 8 Oct 2024 13:13:41 GMT
- Title: LACOSTE: Exploiting stereo and temporal contexts for surgical instrument segmentation
- Authors: Qiyuan Wang, Shang Zhao, Zikang Xu, S Kevin Zhou,
- Abstract summary: We propose a novel LACOSTE model that exploits Location-Agnostic COntexts in Stereo and TEmporal images for improved surgical instrument segmentation.
We extensively validate our approach on three public surgical video datasets.
- Score: 14.152207010509763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surgical instrument segmentation is instrumental to minimally invasive surgeries and related applications. Most previous methods formulate this task as single-frame-based instance segmentation while ignoring the natural temporal and stereo attributes of a surgical video. As a result, these methods are less robust against the appearance variation through temporal motion and view change. In this work, we propose a novel LACOSTE model that exploits Location-Agnostic COntexts in Stereo and TEmporal images for improved surgical instrument segmentation. Leveraging a query-based segmentation model as core, we design three performance-enhancing modules. Firstly, we design a disparity-guided feature propagation module to enhance depth-aware features explicitly. To generalize well for even only a monocular video, we apply a pseudo stereo scheme to generate complementary right images. Secondly, we propose a stereo-temporal set classifier, which aggregates stereo-temporal contexts in a universal way for making a consolidated prediction and mitigates transient failures. Finally, we propose a location-agnostic classifier to decouple the location bias from mask prediction and enhance the feature semantics. We extensively validate our approach on three public surgical video datasets, including two benchmarks from EndoVis Challenges and one real radical prostatectomy surgery dataset GraSP. Experimental results demonstrate the promising performances of our method, which consistently achieves comparable or favorable results with previous state-of-the-art approaches.
Related papers
- Surgical Triplet Recognition via Diffusion Model [59.50938852117371]
Surgical triplet recognition is an essential building block to enable next-generation context-aware operating rooms.
We propose Difft, a new generative framework for surgical triplet recognition employing the diffusion model.
Experiments on the CholecT45 and CholecT50 datasets show the superiority of the proposed method in achieving a new state-of-the-art performance for surgical triplet recognition.
arXiv Detail & Related papers (2024-06-19T04:43:41Z) - WeakSurg: Weakly supervised surgical instrument segmentation using temporal equivariance and semantic continuity [14.448593791011204]
We propose a weakly supervised surgical instrument segmentation with only instrument presence labels.
We take the inherent temporal attributes of surgical video into account and extend a two-stage weakly supervised segmentation paradigm.
Experiments are validated on two surgical video datasets, including one cholecystectomy surgery benchmark and one real robotic left lateral segment liver surgery dataset.
arXiv Detail & Related papers (2024-03-14T16:39:11Z) - Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries [29.201385352740555]
We propose a novel visual-kinematics graph learning framework to accurately segment the instrument tip given various surgical procedures.
Specifically, a graph learning framework is proposed to encode relational features of instrument parts from both image and kinematics.
A cross-modal contrastive loss is designed to incorporate robust geometric prior from kinematics to image for tip segmentation.
arXiv Detail & Related papers (2023-09-02T14:52:58Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
We propose a vision transformer-based approach to learn temporal features directly from sequence-level patches.
We extensively evaluate our approach on two cataract surgery video datasets, Cataract-101 and D99, and demonstrate superior performance compared to various state-of-the-art methods.
arXiv Detail & Related papers (2023-07-20T17:57:04Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
We propose PGV-CL, a novel pseudo-label guided cross-video contrast learning method to boost scene segmentation.
We extensively evaluate our method on a public robotic surgery dataset EndoVis18 and a public cataract dataset CaDIS.
arXiv Detail & Related papers (2022-07-20T05:42:19Z) - TraSeTR: Track-to-Segment Transformer with Contrastive Query for
Instance-level Instrument Segmentation in Robotic Surgery [60.439434751619736]
We propose TraSeTR, a Track-to-Segment Transformer that exploits tracking cues to assist surgical instrument segmentation.
TraSeTR jointly reasons about the instrument type, location, and identity with instance-level predictions.
The effectiveness of our method is demonstrated with state-of-the-art instrument type segmentation results on three public datasets.
arXiv Detail & Related papers (2022-02-17T05:52:18Z) - FUN-SIS: a Fully UNsupervised approach for Surgical Instrument
Segmentation [16.881624842773604]
We present FUN-SIS, a Fully-supervised approach for binary Surgical Instrument.
We train a per-frame segmentation model on completely unlabelled endoscopic videos, by relying on implicit motion information and instrument shape-priors.
The obtained fully-unsupervised results for surgical instrument segmentation are almost on par with the ones of fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-16T15:32:02Z) - ISINet: An Instance-Based Approach for Surgical Instrument Segmentation [0.0]
We study the task of semantic segmentation of surgical instruments in robotic-assisted surgery scenes.
We propose ISINet, a method that addresses this task from an instance-based segmentation perspective.
Our results show that ISINet significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T16:20:56Z) - Learning Motion Flows for Semi-supervised Instrument Segmentation from
Robotic Surgical Video [64.44583693846751]
We study the semi-supervised instrument segmentation from robotic surgical videos with sparse annotations.
By exploiting generated data pairs, our framework can recover and even enhance temporal consistency of training sequences.
Results show that our method outperforms the state-of-the-art semisupervised methods by a large margin.
arXiv Detail & Related papers (2020-07-06T02:39:32Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.