Bound states and atomic interaction in giant atom waveguide QED with dispersive coupling
- URL: http://arxiv.org/abs/2409.09373v1
- Date: Sat, 14 Sep 2024 08:54:44 GMT
- Title: Bound states and atomic interaction in giant atom waveguide QED with dispersive coupling
- Authors: Mingzhu Weng, Zhihai Wang,
- Abstract summary: We consider the dispersive coupling scheme, where the frequency of the giant atoms are far away from the propagating band of the waveguide.
In our scheme, the atomic interaction can be induced by the overlap between the bound states in the gap.
We find that the transfer fidelity of a superposition state can approach $0.999$.
- Score: 2.5782420501870296
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this paper, we investigate the bound states and the effective interaction between a pair of giant atoms, which couples to the coupled resonator waveguide in a nested configuration. To suppress the harmful individual and collective dissipations to the waveguide, we consider the dispersive coupling scheme, where the frequency of the giant atoms are far away from the propagating band of the waveguide. In our scheme, the atomic interaction can be induced by the overlap between the bound states in the gap. We demonstrate the relative position dependent atomic coupling and explore its application in the state transfer. We find that the transfer fidelity of a superposition state can approach $0.999$. Therefore, our scheme is useful for designing robust quantum information processing.
Related papers
- Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Ultrastrong waveguide QED with giant atoms [0.0]
We extend the theory of giant atoms to deal with the ultrastrong coupling regime.
We show that virtual photons dressing the ground state are non-exponentially localized around the contact points but decay as a power-law.
arXiv Detail & Related papers (2022-05-16T18:01:13Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Unconventional Quantum Electrodynamics with Hofstadter-Ladder Waveguide [5.693517450178467]
We propose a novel quantum electrodynamics (QED) platform where quantum emitters interact with a Hofstadter-ladder waveguide.
By assuming emitter's frequency to be resonant with the lower band, we find that the spontaneous emission is chiral.
Due to quantum interference, we find that both the emitter-waveguide interaction and the amplitudes of bound states are periodically modulated by giant emitter's size.
arXiv Detail & Related papers (2022-03-21T07:07:26Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Bound and Subradiant Multi-Atom Excitations in an Atomic Array with
Nonreciprocal Couplings [0.0]
Collective decays of multiply-excited atoms become subradiant and bound in space when they are strongly coupled to the guided modes in an atom-waveguide interface.
We analyze their average density-density and modified third-order correlations via Kubo cumulant expansions.
This leads to a potential application of quantum information processing and quantum storage in the encoded nonreciprocal spin diffusion.
arXiv Detail & Related papers (2021-02-07T09:35:44Z) - Entanglement preparation and non-reciprocal excitation evolution in
giant atoms by controllable dissipation and coupling [0.29005223064604074]
We investigate the dynamics of giant atom(s) in a waveguide QED scenario, where the atom couples to the coupled resonator waveguide via two sites.
For a single giant atom setup, we find that the atomic dissipation rate can be adjusted by tuning its size.
We can theoretically realize the robust entangled state preparation and non-reciprocal excitation evolution.
arXiv Detail & Related papers (2020-12-13T08:33:11Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Tunable Chiral Bound States with Giant Atoms [7.602393730720086]
We propose tunable chiral bound states in a system composed of superconducting giant atoms and a Josephson photonic-crystal waveguide (PCW)
The chirality can be tuned by changing the atom-waveguide coupling or the external bias of the PCW.
Our proposal is ready to be implemented in experiments with superconducting circuits, where it can be used as a tunable toolbox to realize topological phase transitions and quantum simulations.
arXiv Detail & Related papers (2020-08-31T12:45:37Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.