Tunable Chiral Bound States with Giant Atoms
- URL: http://arxiv.org/abs/2008.13560v2
- Date: Fri, 5 Feb 2021 03:33:48 GMT
- Title: Tunable Chiral Bound States with Giant Atoms
- Authors: Xin Wang, Tao Liu, Anton Frisk Kockum, Hong-Rong Li and Franco Nori
- Abstract summary: We propose tunable chiral bound states in a system composed of superconducting giant atoms and a Josephson photonic-crystal waveguide (PCW)
The chirality can be tuned by changing the atom-waveguide coupling or the external bias of the PCW.
Our proposal is ready to be implemented in experiments with superconducting circuits, where it can be used as a tunable toolbox to realize topological phase transitions and quantum simulations.
- Score: 7.602393730720086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose tunable chiral bound states in a system composed of
superconducting giant atoms and a Josephson photonic-crystal waveguide (PCW),
with no analog in other quantum setups. The chiral bound states arise due to
interference in the nonlocal coupling of a giant atom to multiple points of the
waveguide. The chirality can be tuned by changing either the atom-waveguide
coupling or the external bias of the PCW. Furthermore, the chiral bound states
can induce directional dipole-dipole interactions between multiple giant atoms
coupling to the same waveguide. Our proposal is ready to be implemented in
experiments with superconducting circuits, where it can be used as a tunable
toolbox to realize topological phase transitions and quantum simulations.
Related papers
- Tunable photon scattering by an atom dimer coupled to a band edge of a photonic crystal waveguide [0.0]
Quantum emitters trapped near photonic crystal waveguides have emerged as an exciting platform for realizing novel quantum matter-light interfaces.
We study tunable photon scattering in a photonic crystal waveguide coupled to an atom dimer with an arbitrary spatial separation.
arXiv Detail & Related papers (2024-09-30T13:57:58Z) - Bound states and atomic interaction in giant atom waveguide QED with dispersive coupling [2.5782420501870296]
We consider the dispersive coupling scheme, where the frequency of the giant atoms are far away from the propagating band of the waveguide.
In our scheme, the atomic interaction can be induced by the overlap between the bound states in the gap.
We find that the transfer fidelity of a superposition state can approach $0.999$.
arXiv Detail & Related papers (2024-09-14T08:54:44Z) - Entanglement enhancement of two giant atoms with multiple connection points in bidirectional-chiral quantum waveguide-QED system [5.2635935968082626]
We study the entanglement generation of two giant atoms within a one-dimensional bidirectional-chiral waveguide quantum electrodynamics (QED) system.
We find that entanglement can be controlled as needed by either adjusting the phase shift or selecting different configurations.
Our scheme can be used for entanglement generation in chiral quantum networks of giant-atom waveguide-QED systems.
arXiv Detail & Related papers (2024-04-29T03:36:55Z) - Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Optically induced topological superconductivity via Floquet interaction
engineering [0.0]
We propose a mechanism for light-induced unconventional superconductivity in a two-valley semiconductor with a massive Dirac type band structure.
We consider a circularly-polarized light pump and show that by controlling the detuning of the pump frequency relative to the band gap, different types of chiral superconductivity would be induced.
arXiv Detail & Related papers (2020-08-10T18:17:36Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.