論文の概要: Estimating Neural Orientation Distribution Fields on High Resolution Diffusion MRI Scans
- arxiv url: http://arxiv.org/abs/2409.09387v1
- Date: Sat, 14 Sep 2024 09:36:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 20:57:09.130700
- Title: Estimating Neural Orientation Distribution Fields on High Resolution Diffusion MRI Scans
- Title(参考訳): 高分解能拡散MRIにおける神経方向分布場の推定
- Authors: Mohammed Munzer Dwedari, William Consagra, Philip Müller, Özgün Turgut, Daniel Rueckert, Yogesh Rathi,
- Abstract要約: HashEncは、配向分布関数(ODF)フィールドのグリッドハッシュに基づく推定である。
本稿では,HashEncが画像品質を10%向上すると同時に,現在の手法よりも3倍少ない計算資源を必要とすることを示す。
- 参考スコア(独自算出の注目度): 10.565213120312524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Orientation Distribution Function (ODF) characterizes key brain microstructural properties and plays an important role in understanding brain structural connectivity. Recent works introduced Implicit Neural Representation (INR) based approaches to form a spatially aware continuous estimate of the ODF field and demonstrated promising results in key tasks of interest when compared to conventional discrete approaches. However, traditional INR methods face difficulties when scaling to large-scale images, such as modern ultra-high-resolution MRI scans, posing challenges in learning fine structures as well as inefficiencies in training and inference speed. In this work, we propose HashEnc, a grid-hash-encoding-based estimation of the ODF field and demonstrate its effectiveness in retaining structural and textural features. We show that HashEnc achieves a 10% enhancement in image quality while requiring 3x less computational resources than current methods. Our code can be found at https://github.com/MunzerDw/NODF-HashEnc.
- Abstract(参考訳): 配向分布関数(ODF)は、主要な脳の微細構造特性を特徴づけ、脳の構造的接続を理解する上で重要な役割を担っている。
最近の研究はインプリシット・ニューラル・リ表現(INR)に基づく ODF フィールドの空間的認識連続推定法を導入し、従来の離散的アプローチと比較して、重要なタスクにおける有望な結果を示した。
しかし、従来のINR法は、現代の超高解像度MRIスキャン、微細構造学習における課題、トレーニングや推論速度の非効率性など、大規模な画像へのスケーリングにおいて困難に直面している。
本研究では, ODFフィールドのグリッドハッシュ符号化に基づく評価手法であるHashEncを提案し, 構造的およびテクスチャ的特徴を維持する上での有効性を実証する。
本稿では,HashEncが画像品質を10%向上すると同時に,現在の手法よりも3倍少ない計算資源を必要とすることを示す。
私たちのコードはhttps://github.com/MunzerDw/NODF-HashEnc.orgにある。
関連論文リスト
- LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
運動画像(MI)と運動実行(ME)タスクのためのスパースマルチタスク学習フレームワークを提案する。
MI-ME分類のためのデュアルタスクCNNモデルが与えられた場合、過渡的な接続に対して、サリエンシに基づくスペーシフィケーションアプローチを適用する。
以上の結果から, この調整された疎水性は, 過度に適合する問題を緩和し, 少ないデータ量でテスト性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T09:06:16Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
本稿では,フローフィールドデータの超高分解能化のための特徴強調型ニューラルインシシット表現(FFEINR)を提案する。
モデル構造とサンプリング分解能の観点から、暗黙のニューラル表現を最大限に活用することができる。
FFEINRのトレーニングプロセスは、入力層に機能拡張を導入することで容易になる。
論文 参考訳(メタデータ) (2023-08-24T02:28:18Z) - Implicit Neural Feature Fusion Function for Multispectral and
Hyperspectral Image Fusion [12.43436096160316]
MHIFは高分解能マルチスペクトル画像(HR-MSI)と高分解能ハイパースペクトル画像(LR-HSI)を融合して高分解能ハイパースペクトル画像(HR-HSI)を得るための実用的課題である。
論文 参考訳(メタデータ) (2023-07-14T11:59:47Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - MA-RECON: Mask-aware deep-neural-network for robust fast MRI k-space
interpolation [3.0821115746307672]
低サンプリングkspaceデータからのMRI画像の高品質な再構成は、MRI取得時間を短縮し、時間分解能を向上するために重要である。
本稿では,マスク対応ディープニューラルネットワーク(DNN)アーキテクチャと関連するトレーニング手法であるMA-RECONを紹介する。
様々なアンダーサンプリングマスクで生成されたデータを活用して、アンダーサンプリングされたMRI再構成問題の一般化を刺激する。
論文 参考訳(メタデータ) (2022-08-31T15:57:38Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
クロスリゾリューション顔認識(CRFR)は、インテリジェントな監視およびバイオメトリックフォレンジックにおいて重要である。
既存の浅層学習と深層学習に基づく手法は、HR-LR対を共同特徴空間にマッピングすることに焦点を当てている。
本研究では,多レベル深層畳み込みニューラルネットワーク(CNN)の機能を完全に活用し,堅牢なCRFRを実現することを目的とする。
論文 参考訳(メタデータ) (2021-03-25T14:03:42Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
ノイズの多いHSIからクリーンなHSIへのマッピングを学習するために,注目に基づくディープ残差ネットワークを提案する。
実験の結果,提案手法は定量的および視覚的評価において最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-04T08:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。