Real-world Adversarial Defense against Patch Attacks based on Diffusion Model
- URL: http://arxiv.org/abs/2409.09406v1
- Date: Sat, 14 Sep 2024 10:38:35 GMT
- Title: Real-world Adversarial Defense against Patch Attacks based on Diffusion Model
- Authors: Xingxing Wei, Caixin Kang, Yinpeng Dong, Zhengyi Wang, Shouwei Ruan, Yubo Chen, Hang Su,
- Abstract summary: This paper introduces DIFFender, a novel DIFfusion-based DeFender framework to counter adversarial patch attacks.
At the core of our approach is the discovery of the Adversarial Anomaly Perception (AAP) phenomenon.
DIFFender seamlessly integrates the tasks of patch localization and restoration within a unified diffusion model framework.
- Score: 34.86098237949215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial patches present significant challenges to the robustness of deep learning models, making the development of effective defenses become critical for real-world applications. This paper introduces DIFFender, a novel DIFfusion-based DeFender framework that leverages the power of a text-guided diffusion model to counter adversarial patch attacks. At the core of our approach is the discovery of the Adversarial Anomaly Perception (AAP) phenomenon, which enables the diffusion model to accurately detect and locate adversarial patches by analyzing distributional anomalies. DIFFender seamlessly integrates the tasks of patch localization and restoration within a unified diffusion model framework, enhancing defense efficacy through their close interaction. Additionally, DIFFender employs an efficient few-shot prompt-tuning algorithm, facilitating the adaptation of the pre-trained diffusion model to defense tasks without the need for extensive retraining. Our comprehensive evaluation, covering image classification and face recognition tasks, as well as real-world scenarios, demonstrates DIFFender's robust performance against adversarial attacks. The framework's versatility and generalizability across various settings, classifiers, and attack methodologies mark a significant advancement in adversarial patch defense strategies. Except for the popular visible domain, we have identified another advantage of DIFFender: its capability to easily expand into the infrared domain. Consequently, we demonstrate the good flexibility of DIFFender, which can defend against both infrared and visible adversarial patch attacks alternatively using a universal defense framework.
Related papers
- DiffPAD: Denoising Diffusion-based Adversarial Patch Decontamination [5.7254228484416325]
DiffPAD is a novel framework that harnesses the power of diffusion models for adversarial patch decontamination.
We show that DiffPAD achieves state-of-the-art adversarial robustness against patch attacks and excels in recovering naturalistic images without patch remnants.
arXiv Detail & Related papers (2024-10-31T15:09:36Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
This work investigates the vulnerabilities of security-enhancing diffusion models.
We demonstrate that these models are highly susceptible to DIFF2, a simple yet effective backdoor attack.
Case studies show that DIFF2 can significantly reduce both post-purification and certified accuracy across benchmark datasets and models.
arXiv Detail & Related papers (2024-06-14T02:39:43Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Embodied Active Defense: Leveraging Recurrent Feedback to Counter Adversarial Patches [37.317604316147985]
The vulnerability of deep neural networks to adversarial patches has motivated numerous defense strategies for boosting model robustness.
We develop Embodied Active Defense (EAD), a proactive defensive strategy that actively contextualizes environmental information to address misaligned adversarial patches in 3D real-world settings.
arXiv Detail & Related papers (2024-03-31T03:02:35Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - RADAP: A Robust and Adaptive Defense Against Diverse Adversarial Patches
on Face Recognition [13.618387142029663]
Face recognition systems powered by deep learning are vulnerable to adversarial attacks.
We propose RADAP, a robust and adaptive defense mechanism against diverse adversarial patches.
We conduct comprehensive experiments to validate the effectiveness of RADAP.
arXiv Detail & Related papers (2023-11-29T03:37:14Z) - Unified Adversarial Patch for Visible-Infrared Cross-modal Attacks in
the Physical World [11.24237636482709]
We design a unified adversarial patch that can perform cross-modal physical attacks, achieving evasion in both modalities simultaneously with a single patch.
We propose a novel boundary-limited shape optimization approach that aims to achieve compact and smooth shapes for the adversarial patch.
Our method is evaluated against several state-of-the-art object detectors, achieving an Attack Success Rate (ASR) of over 80%.
arXiv Detail & Related papers (2023-07-27T08:14:22Z) - DIFFender: Diffusion-Based Adversarial Defense against Patch Attacks [34.86098237949214]
Adversarial attacks, particularly patch attacks, pose significant threats to the robustness and reliability of deep learning models.
This paper introduces DIFFender, a novel defense framework that harnesses the capabilities of a text-guided diffusion model to combat patch attacks.
DIFFender integrates dual tasks of patch localization and restoration within a single diffusion model framework.
arXiv Detail & Related papers (2023-06-15T13:33:27Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - On the Real-World Adversarial Robustness of Real-Time Semantic
Segmentation Models for Autonomous Driving [59.33715889581687]
The existence of real-world adversarial examples (commonly in the form of patches) poses a serious threat for the use of deep learning models in safety-critical computer vision tasks.
This paper presents an evaluation of the robustness of semantic segmentation models when attacked with different types of adversarial patches.
A novel loss function is proposed to improve the capabilities of attackers in inducing a misclassification of pixels.
arXiv Detail & Related papers (2022-01-05T22:33:43Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.