DIFFender: Diffusion-Based Adversarial Defense against Patch Attacks
- URL: http://arxiv.org/abs/2306.09124v4
- Date: Wed, 17 Jul 2024 09:22:55 GMT
- Title: DIFFender: Diffusion-Based Adversarial Defense against Patch Attacks
- Authors: Caixin Kang, Yinpeng Dong, Zhengyi Wang, Shouwei Ruan, Yubo Chen, Hang Su, Xingxing Wei,
- Abstract summary: Adversarial attacks, particularly patch attacks, pose significant threats to the robustness and reliability of deep learning models.
This paper introduces DIFFender, a novel defense framework that harnesses the capabilities of a text-guided diffusion model to combat patch attacks.
DIFFender integrates dual tasks of patch localization and restoration within a single diffusion model framework.
- Score: 34.86098237949214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks, particularly patch attacks, pose significant threats to the robustness and reliability of deep learning models. Developing reliable defenses against patch attacks is crucial for real-world applications. This paper introduces DIFFender, a novel defense framework that harnesses the capabilities of a text-guided diffusion model to combat patch attacks. Central to our approach is the discovery of the Adversarial Anomaly Perception (AAP) phenomenon, which empowers the diffusion model to detect and localize adversarial patches through the analysis of distributional discrepancies. DIFFender integrates dual tasks of patch localization and restoration within a single diffusion model framework, utilizing their close interaction to enhance defense efficacy. Moreover, DIFFender utilizes vision-language pre-training coupled with an efficient few-shot prompt-tuning algorithm, which streamlines the adaptation of the pre-trained diffusion model to defense tasks, thus eliminating the need for extensive retraining. Our comprehensive evaluation spans image classification and face recognition tasks, extending to real-world scenarios, where DIFFender shows good robustness against adversarial attacks. The versatility and generalizability of DIFFender are evident across a variety of settings, classifiers, and attack methodologies, marking an advancement in adversarial patch defense strategies.
Related papers
- Real-world Adversarial Defense against Patch Attacks based on Diffusion Model [34.86098237949215]
This paper introduces DIFFender, a novel DIFfusion-based DeFender framework to counter adversarial patch attacks.
At the core of our approach is the discovery of the Adversarial Anomaly Perception (AAP) phenomenon.
DIFFender seamlessly integrates the tasks of patch localization and restoration within a unified diffusion model framework.
arXiv Detail & Related papers (2024-09-14T10:38:35Z) - DiffuseDef: Improved Robustness to Adversarial Attacks [38.34642687239535]
adversarial attacks pose a critical challenge to system built using pretrained language models.
We propose DiffuseDef, which incorporates a diffusion layer as a denoiser between the encoder and the classifier.
During inference, the adversarial hidden state is first combined with sampled noise, then denoised iteratively and finally ensembled to produce a robust text representation.
arXiv Detail & Related papers (2024-06-28T22:36:17Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Embodied Active Defense: Leveraging Recurrent Feedback to Counter Adversarial Patches [37.317604316147985]
The vulnerability of deep neural networks to adversarial patches has motivated numerous defense strategies for boosting model robustness.
We develop Embodied Active Defense (EAD), a proactive defensive strategy that actively contextualizes environmental information to address misaligned adversarial patches in 3D real-world settings.
arXiv Detail & Related papers (2024-03-31T03:02:35Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - RADAP: A Robust and Adaptive Defense Against Diverse Adversarial Patches
on Face Recognition [13.618387142029663]
Face recognition systems powered by deep learning are vulnerable to adversarial attacks.
We propose RADAP, a robust and adaptive defense mechanism against diverse adversarial patches.
We conduct comprehensive experiments to validate the effectiveness of RADAP.
arXiv Detail & Related papers (2023-11-29T03:37:14Z) - DiffDefense: Defending against Adversarial Attacks via Diffusion Models [24.328384566645738]
The susceptibility of machine learning models to perturbations renders them vulnerable to adversarial attacks.
Our proposed method offers robustness against adversarial threats while preserving clean accuracy, speed, and plug-and-play compatibility.
arXiv Detail & Related papers (2023-09-07T13:28:36Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.