Protecting Vehicle Location Privacy with Contextually-Driven Synthetic Location Generation
- URL: http://arxiv.org/abs/2409.09495v1
- Date: Sat, 14 Sep 2024 17:47:23 GMT
- Title: Protecting Vehicle Location Privacy with Contextually-Driven Synthetic Location Generation
- Authors: Sourabh Yadav, Chenyang Yu, Xinpeng Xie, Yan Huang, Chenxi Qiu,
- Abstract summary: We introduce VehiTrack, a new threat model to demonstrate the vulnerability of Geo-Ind in protecting vehicle location privacy.
VehiTrack can accurately determine exact vehicle locations from obfuscated data.
We propose TransProtect, a new geo-obfuscation approach that limits obfuscation to realistic vehicle movement patterns.
- Score: 5.283624671933499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geo-obfuscation is a Location Privacy Protection Mechanism used in location-based services that allows users to report obfuscated locations instead of exact ones. A formal privacy criterion, geoindistinguishability (Geo-Ind), requires real locations to be hard to distinguish from nearby locations (by attackers) based on their obfuscated representations. However, Geo-Ind often fails to consider context, such as road networks and vehicle traffic conditions, making it less effective in protecting the location privacy of vehicles, of which the mobility are heavily influenced by these factors. In this paper, we introduce VehiTrack, a new threat model to demonstrate the vulnerability of Geo-Ind in protecting vehicle location privacy from context-aware inference attacks. Our experiments demonstrate that VehiTrack can accurately determine exact vehicle locations from obfuscated data, reducing average inference errors by 61.20% with Laplacian noise and 47.35% with linear programming (LP) compared to traditional Bayesian attacks. By using contextual data like road networks and traffic flow, VehiTrack effectively eliminates a significant number of seemingly "impossible" locations during its search for the actual location of the vehicles. Based on these insights, we propose TransProtect, a new geo-obfuscation approach that limits obfuscation to realistic vehicle movement patterns, complicating attackers' ability to differentiate obfuscated from actual locations. Our results show that TransProtect increases VehiTrack's inference error by 57.75% with Laplacian noise and 27.21% with LP, significantly enhancing protection against these attacks.
Related papers
- A Location Validation Technique to Mitigate GPS Spoofing Attacks in IEEE 802.11p based Fleet Operator's Network of Electric Vehicles [2.5582913676558205]
Vehicle rebalancing application uses the GPS location data of the vehicles periodically to determine the vehicle(s) to be moved to a different charging station for rebalancing.
A malicious attacker residing in the network can spoof the GPS location data packets of the target vehicle(s) resulting in misinterpretation of the location of the vehicle(s)
We propose a location tracking technique that can validate the current location of a vehicle based on its previous location and roadmaps.
arXiv Detail & Related papers (2024-10-16T20:42:27Z) - Scalable Optimization for Locally Relevant Geo-Location Privacy [1.8725443025607187]
Geo-obfuscation functions as a location privacy protection mechanism (LPPM)
This technique protects users' location privacy during server-side data breaches.
We propose a new LPPM called Locally Relevant Geo-obfuscation (LR-Geo) to geo-obfuscation using LP more efficiently.
arXiv Detail & Related papers (2024-07-18T17:25:08Z) - Your Car Tells Me Where You Drove: A Novel Path Inference Attack via CAN Bus and OBD-II Data [57.22545280370174]
On Path Diagnostic - Intrusion & Inference (OPD-II) is a novel path inference attack leveraging a physical car model and a map matching algorithm.
We implement our attack on a set of four different cars and a total number of 41 tracks in different road and traffic scenarios.
arXiv Detail & Related papers (2024-06-30T04:21:46Z) - Measuring Privacy Loss in Distributed Spatio-Temporal Data [26.891854386652266]
We propose an alternative privacy loss against location reconstruction attacks by an informed adversary.
Our experiments on real and synthetic data demonstrate that our privacy loss better reflects our intuitions on individual privacy violation in the distributed setting.
arXiv Detail & Related papers (2024-02-18T09:53:14Z) - Privacy-Utility Trades in Crowdsourced Signal Map Obfuscation [20.58763760239068]
Crowdsource celluar signal strength measurements can be used to generate signal maps to improve network performance.
We consider obfuscating such data before the data leaves the mobile device.
Our evaluation results, based on multiple, diverse, real-world signal map datasets, demonstrate the feasibility of concurrently achieving adequate privacy and utility.
arXiv Detail & Related papers (2022-01-13T03:46:22Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Mind the GAP: Security & Privacy Risks of Contact Tracing Apps [75.7995398006171]
Google and Apple have jointly provided an API for exposure notification in order to implement decentralized contract tracing apps using Bluetooth Low Energy.
We demonstrate that in real-world scenarios the GAP design is vulnerable to (i) profiling and possibly de-anonymizing persons, and (ii) relay-based wormhole attacks that basically can generate fake contacts.
arXiv Detail & Related papers (2020-06-10T16:05:05Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
We propose a new location privacy notion called PGLP, which provides a rich interface to release private locations with customizable and rigorous privacy guarantee.
Specifically, we formalize a user's location privacy requirements using a textitlocation policy graph, which is expressive and customizable.
Third, we design a private location trace release framework that pipelines the detection of location exposure, policy graph repair, and private trajectory release with customizable and rigorous location privacy.
arXiv Detail & Related papers (2020-05-04T04:25:59Z) - Know Your Surroundings: Exploiting Scene Information for Object Tracking [181.1750279330811]
Current state-of-the-art trackers only rely on a target appearance model in order to localize the object in each frame.
We propose a novel tracking architecture which can utilize scene information for tracking.
arXiv Detail & Related papers (2020-03-24T17:59:04Z) - Cooling-Shrinking Attack: Blinding the Tracker with Imperceptible Noises [87.53808756910452]
A cooling-shrinking attack method is proposed to deceive state-of-the-art SiameseRPN-based trackers.
Our method has good transferability and is able to deceive other top-performance trackers such as DaSiamRPN, DaSiamRPN-UpdateNet, and DiMP.
arXiv Detail & Related papers (2020-03-21T07:13:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.