Towards Data-Centric RLHF: Simple Metrics for Preference Dataset Comparison
- URL: http://arxiv.org/abs/2409.09603v1
- Date: Sun, 15 Sep 2024 03:55:03 GMT
- Title: Towards Data-Centric RLHF: Simple Metrics for Preference Dataset Comparison
- Authors: Judy Hanwen Shen, Archit Sharma, Jun Qin,
- Abstract summary: We systematically study preference datasets through three perspectives: scale, label noise, and information content.
Our work is a first step towards a data-centric approach to alignment by providing perspectives that aid in training efficiency and iterative data collection for RLHF.
- Score: 9.324894567200582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of aligning language models to human preferences requires data that reveal these preferences. Ideally, time and money can be spent carefully collecting and tailoring bespoke preference data to each downstream application. However, in practice, a select few publicly available preference datasets are often used to train reward models for reinforcement learning from human feedback (RLHF). While new preference datasets are being introduced with increasing frequency, there are currently no existing efforts to measure and compare these datasets. In this paper, we systematically study preference datasets through three perspectives: scale, label noise, and information content. We propose specific metrics for each of these perspectives and uncover different axes of comparison for a better understanding of preference datasets. Our work is a first step towards a data-centric approach to alignment by providing perspectives that aid in training efficiency and iterative data collection for RLHF.
Related papers
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Diffusion Models as Data Mining Tools [87.77999285241219]
This paper demonstrates how to use generative models trained for image synthesis as tools for visual data mining.
We show that after finetuning conditional diffusion models to synthesize images from a specific dataset, we can use these models to define a typicality measure.
This measure assesses how typical visual elements are for different data labels, such as geographic location, time stamps, semantic labels, or even the presence of a disease.
arXiv Detail & Related papers (2024-07-20T17:14:31Z) - Hindsight Preference Learning for Offline Preference-based Reinforcement Learning [22.870967604847458]
Offline preference-based reinforcement learning (RL) focuses on optimizing policies using human preferences between pairs of trajectory segments selected from an offline dataset.
We propose to model human preferences using rewards conditioned on future outcomes of the trajectory segments.
Our proposed method, Hindsight Preference Learning (HPL), can facilitate credit assignment by taking full advantage of vast trajectory data available in massive unlabeled datasets.
arXiv Detail & Related papers (2024-07-05T12:05:37Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
We propose a new framework that boosts the alignment of large language models (LLMs) with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Scaling Laws for the Value of Individual Data Points in Machine Learning [55.596413470429475]
We introduce a new perspective by investigating scaling behavior for the value of individual data points.
We provide learning theory to support our scaling law, and we observe empirically that it holds across diverse model classes.
Our work represents a first step towards understanding and utilizing scaling properties for the value of individual data points.
arXiv Detail & Related papers (2024-05-30T20:10:24Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
Deep learning models often require large amounts of data for training, leading to increased costs.
We present two data valuation metrics based on Synaptic Intelligence and gradient norms, respectively, to study redundancy in real-world image data.
Online and offline data selection algorithms are then proposed via clustering and grouping based on the examined data values.
arXiv Detail & Related papers (2023-06-25T03:31:05Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerse is a universal framework for dataset characterization.
infoVerse captures multidimensional characteristics of datasets by incorporating various model-driven meta-information.
In three real-world applications (data pruning, active learning, and data annotation), the samples chosen on infoVerse space consistently outperform strong baselines.
arXiv Detail & Related papers (2023-05-30T18:12:48Z) - Measuring Data Quality for Dataset Selection in Offline Reinforcement
Learning [2.3333090554192615]
Recently developed offline reinforcement learning algorithms have made it possible to learn policies directly from pre-collected datasets.
Since the performance the algorithms are able to deliver depends greatly on the dataset that is presented to them, practitioners need to pick the right dataset among the available ones.
We discuss ideas how to select promising datasets and propose three very simple indicators: Estimated relative return improvement (ERI), estimated action relativeity (EAS), and a combination of the two (COI)
arXiv Detail & Related papers (2021-11-26T12:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.