論文の概要: Confidence Estimation for LLM-Based Dialogue State Tracking
- arxiv url: http://arxiv.org/abs/2409.09629v1
- Date: Sun, 15 Sep 2024 06:44:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 19:58:08.821759
- Title: Confidence Estimation for LLM-Based Dialogue State Tracking
- Title(参考訳): LLMに基づく対話状態追跡の信頼度推定
- Authors: Yi-Jyun Sun, Suvodip Dey, Dilek Hakkani-Tur, Gokhan Tur,
- Abstract要約: 大規模言語モデル(LLM)に基づく会話型AIシステムでは,モデルの出力に対する信頼度の推定が重要である。
オープン・アンド・クローズド・ウェイト LLM に提案するアプローチを含む,手法の徹底的な探索を行う。
以上の結果から, 微調整式オープンウェイトLLMはAUC性能が向上し, 信頼性スコアの校正精度が向上することが示唆された。
- 参考スコア(独自算出の注目度): 9.305763502526833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimation of a model's confidence on its outputs is critical for Conversational AI systems based on large language models (LLMs), especially for reducing hallucination and preventing over-reliance. In this work, we provide an exhaustive exploration of methods, including approaches proposed for open- and closed-weight LLMs, aimed at quantifying and leveraging model uncertainty to improve the reliability of LLM-generated responses, specifically focusing on dialogue state tracking (DST) in task-oriented dialogue systems (TODS). Regardless of the model type, well-calibrated confidence scores are essential to handle uncertainties, thereby improving model performance. We evaluate four methods for estimating confidence scores based on softmax, raw token scores, verbalized confidences, and a combination of these methods, using the area under the curve (AUC) metric to assess calibration, with higher AUC indicating better calibration. We also enhance these with a self-probing mechanism, proposed for closed models. Furthermore, we assess these methods using an open-weight model fine-tuned for the task of DST, achieving superior joint goal accuracy (JGA). Our findings also suggest that fine-tuning open-weight LLMs can result in enhanced AUC performance, indicating better confidence score calibration.
- Abstract(参考訳): 大規模言語モデル(LLM)に基づく会話型AIシステムでは,特に幻覚の低減と過度信頼の防止のために,モデルのアウトプットに対する信頼度の推定が重要である。
本研究では,オープンおよびクローズドウェイト LLM に提案する手法を包括的に探索し,モデル不確実性を定量化し,LLM 生成応答の信頼性を向上させることを目的として,特にタスク指向対話システム(TODS)における対話状態追跡(DST)に焦点を当てた。
モデルの種類にかかわらず、不確実性に対処するためには、よく校正された信頼スコアが不可欠であり、モデル性能が向上する。
そこで我々は,ソフトマックス,生トークンスコア,言語的信頼度に基づいて信頼度を推定する4つの手法と,これらの手法を組み合わせて,曲線(AUC)測定値に基づくキャリブレーションの評価を行い,より高い校正率を示す。
また、閉モデルに対して提案する自己探索機構によりこれを拡張する。
さらに,これらの手法をDSTタスク用に微調整したオープンウェイトモデルを用いて評価し,より優れた関節ゴール精度(JGA)を実現する。
また, 微調整式オープンウェイトLLMではAUC性能が向上し, 信頼性スコアの校正精度が向上することが示唆された。
関連論文リスト
- On Calibration of LLM-based Guard Models for Reliable Content Moderation [27.611237252584402]
大規模言語モデル(LLM)は、有害なコンテンツを生成する可能性や、ガードレールを避けようとするユーザによって、重大なリスクを負う。
既存の研究では、脅威LSMの入力と出力を適度にするためのLLMベースのガードモデルが開発されている。
しかし、これらのガードモデルの信頼性と校正には限定的な注意が払われている。
論文 参考訳(メタデータ) (2024-10-14T12:04:06Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
反復的選好最適化は、最近、大規模言語モデル(LLM)のデファクトトレーニングパラダイムの1つになっている。
我々は、信頼性の高いフィードバックでLLMを自己進化させる不確実性のあるtextbfPreference textbfOptimizationフレームワークを提案する。
筆者らのフレームワークは,ノイズ問題を大幅に軽減し,反復的選好最適化の性能を向上させる。
論文 参考訳(メタデータ) (2024-09-17T14:05:58Z) - Enhancing Healthcare LLM Trust with Atypical Presentations Recalibration [20.049443396032423]
ブラックボックスの大規模言語モデル(LLM)は、様々な環境に徐々に展開されている。
LLMは、しばしば過剰な自信を示し、潜在的なリスクや誤った判断につながる。
本稿では,非定型的なプレゼンテーションを利用してモデルの信頼度を推定する新しい手法であるtextitAtypical presentations Recalibrationを提案する。
論文 参考訳(メタデータ) (2024-09-05T03:45:35Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
正解と誤解の小さなデータセットを微調整すると、高い一般化と計算オーバーヘッドの少ない不確実性推定が得られることを示す。
また,確実な不確実性推定を可能にする機構についても検討し,多くのモデルを汎用的不確実性推定器として利用することができることを示した。
論文 参考訳(メタデータ) (2024-06-12T16:41:31Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
信頼性・確率アライメントの概念を紹介します。
モデルの内部と信頼感の一致を調査する。
分析したモデルのうち、OpenAIのGPT-4は信頼性と信頼性のアライメントが最強であった。
論文 参考訳(メタデータ) (2024-05-25T15:42:04Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
本稿では,複数サンプルモデル生成系の分布から信頼度を導出する可能性について,一貫性の3つの尺度を用いて検討する。
その結果、一貫性に基づくキャリブレーション手法は、既存のポストホック手法よりも優れていることがわかった。
種々のLMの特性に合わせて,キャリブレーションに適した整合性指標を選択するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-02-21T16:15:20Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - PACE-LM: Prompting and Augmentation for Calibrated Confidence Estimation
with GPT-4 in Cloud Incident Root Cause Analysis [17.362895895214344]
大規模言語モデル(LLM)は、人間がクラウドインシデントの根本原因を特定するのに役立つ。
そこで本研究では,オンコール技術者がモデル予測を採用するかどうかの判断を支援するために,予測に対する信頼度推定を行うことを提案する。
提案手法は,推定された根本原因に対する校正された信頼度を推定し,検索した履歴データの有用性と促進戦略を検証できることを示す。
論文 参考訳(メタデータ) (2023-09-11T21:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。