論文の概要: Reliable Multi-View Learning with Conformal Prediction for Aortic Stenosis Classification in Echocardiography
- arxiv url: http://arxiv.org/abs/2409.09680v1
- Date: Sun, 15 Sep 2024 10:06:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 19:38:21.080467
- Title: Reliable Multi-View Learning with Conformal Prediction for Aortic Stenosis Classification in Echocardiography
- Title(参考訳): 心エコー図における大動脈狭窄分類のためのコンフォーマル予測を用いた信頼性多視点学習
- Authors: Ang Nan Gu, Michael Tsang, Hooman Vaseli, Teresa Tsang, Purang Abolmaesumi,
- Abstract要約: 得られた画像は、しばしば3次元解剖学の2次元断面であり、重要な解剖学的詳細を欠いている可能性がある。
トレーニングセット内の弱い情報入力に不確実性を導入するデータ中心の手法であるRe-Training for Uncertainty (RT4U)を提案する。
共形予測技術と組み合わせると、RT4Uは、基底真理クラスを含むことが保証される適応的な大きさの予測セットを高精度に得ることができる。
- 参考スコア(独自算出の注目度): 6.540741143328299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fundamental problem with ultrasound-guided diagnosis is that the acquired images are often 2-D cross-sections of a 3-D anatomy, potentially missing important anatomical details. This limitation leads to challenges in ultrasound echocardiography, such as poor visualization of heart valves or foreshortening of ventricles. Clinicians must interpret these images with inherent uncertainty, a nuance absent in machine learning's one-hot labels. We propose Re-Training for Uncertainty (RT4U), a data-centric method to introduce uncertainty to weakly informative inputs in the training set. This simple approach can be incorporated to existing state-of-the-art aortic stenosis classification methods to further improve their accuracy. When combined with conformal prediction techniques, RT4U can yield adaptively sized prediction sets which are guaranteed to contain the ground truth class to a high accuracy. We validate the effectiveness of RT4U on three diverse datasets: a public (TMED-2) and a private AS dataset, along with a CIFAR-10-derived toy dataset. Results show improvement on all the datasets.
- Abstract(参考訳): 超音波ガイド下診断の根本的な問題は、取得した画像がしばしば3次元解剖学の2次元断面であり、重要な解剖学的詳細を欠いていることである。
この制限は、心臓弁の視認性の低下や心室の予知など、超音波心エコー検査の課題に繋がる。
臨床医は、これらのイメージを固有の不確実性、すなわち機械学習の1ホットラベルに欠落したニュアンスで解釈しなければならない。
トレーニングセット内の弱い情報入力に不確実性を導入するデータ中心の手法であるRe-Training for Uncertainty (RT4U)を提案する。
この単純なアプローチは、既存の最先端の大動脈狭窄分類法に組み込むことで、その精度をさらに向上することができる。
共形予測技術と組み合わせると、RT4Uは、基底真理クラスを含むことが保証される適応的な大きさの予測セットを高精度に得ることができる。
CIFAR-10由来の玩具データセットとともに,公開データセット(TMED-2)とプライベートASデータセットの3つの多様なデータセットに対するRT4Uの有効性を検証した。
結果は、すべてのデータセットの改善を示す。
関連論文リスト
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Extraction of volumetric indices from echocardiography: which deep
learning solution for clinical use? [6.144041824426555]
提案した3D nnU-Netは,2D法と繰り返しセグメンテーション法よりも優れていることを示す。
実験の結果、十分なトレーニングデータがあれば、3D nnU-Netは日常的な臨床機器の基準を満たす最初の自動化ツールとなる可能性が示唆された。
論文 参考訳(メタデータ) (2023-05-03T09:38:52Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Medical Instrument Segmentation in 3D US by Hybrid Constrained
Semi-Supervised Learning [62.13520959168732]
3DUSにおける楽器セグメンテーションのための半教師付き学習フレームワークを提案する。
SSL学習を実現するため、Dual-UNetが提案されている。
提案手法は,Diceの約68.6%-69.1%,推定時間約1秒を実現している。
論文 参考訳(メタデータ) (2021-07-30T07:59:45Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
新型コロナウイルスは世界的なパンデミックの流行だ。
高い感度のコンピュータ支援スクリーニングツールは、疾患の診断と予後に不可欠である。
本稿では,3次元畳み込みニューラルネットワーク(CNN)に基づく分類手法を提案する。
論文 参考訳(メタデータ) (2021-02-11T18:16:18Z) - Segmentation-free Estimation of Aortic Diameters from MRI Using Deep
Learning [2.231365407061881]
大動脈径の直接推定のための教師付き深層学習法を提案する。
提案手法では,3Dスキャンを入力とし,所定の位置で大動脈径を出力する3D+2D畳み込みニューラルネットワーク(CNN)を用いる。
全体として、3D+2D CNNは大動脈の位置によって2.2-2.4mmの平均的な絶対誤差を達成した。
論文 参考訳(メタデータ) (2020-09-09T18:28:00Z) - Uncertainty Estimation in Deep 2D Echocardiography Segmentation [0.2062593640149623]
トレーニングデータからさらに離れた分布から来るデータをテストする場合、不確実性推定は重要である。
品質の悪い画像を自動的に拒否し、最先端のセグメンテーション結果を改善するために、不確実性推定がどのように用いられるかを示す。
論文 参考訳(メタデータ) (2020-05-19T10:19:23Z) - How well do U-Net-based segmentation trained on adult cardiac magnetic
resonance imaging data generalise to rare congenital heart diseases for
surgical planning? [2.330464988780586]
先天性心疾患(TOF)患者における肺弁置換術の適応時期は, 主に心室容積と機能に基づく。
過去数年間のいくつかの大きな課題において、U-Netアーキテクチャは提供されたデータに対して印象的な結果を示している。
しかし、臨床実践においては、個々の病理や異なるスキャナー特性から派生した画像特性を考えると、データセットはより多様である。
論文 参考訳(メタデータ) (2020-02-10T08:50:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。