Predicting building types and functions at transnational scale
- URL: http://arxiv.org/abs/2409.09692v1
- Date: Sun, 15 Sep 2024 11:02:45 GMT
- Title: Predicting building types and functions at transnational scale
- Authors: Jonas Fill, Michael Eichelbeck, Michael Ebner,
- Abstract summary: We train a graph neural network (GNN) classifier on a large-scale graph dataset consisting of OpenStreetMap (OSM) buildings across the EU, Norway, Switzerland, and the UK.
A graph transformer model achieves a high Cohen's kappa coefficient of 0.754 when classifying buildings into 9 classes, and a very high Cohen's kappa coefficient of 0.844 when classifying buildings into the residential and non-residential classes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building-specific knowledge such as building type and function information is important for numerous energy applications. However, comprehensive datasets containing this information for individual households are missing in many regions of Europe. For the first time, we investigate whether it is feasible to predict building types and functional classes at a European scale based on only open GIS datasets available across countries. We train a graph neural network (GNN) classifier on a large-scale graph dataset consisting of OpenStreetMap (OSM) buildings across the EU, Norway, Switzerland, and the UK. To efficiently perform training using the large-scale graph, we utilize localized subgraphs. A graph transformer model achieves a high Cohen's kappa coefficient of 0.754 when classifying buildings into 9 classes, and a very high Cohen's kappa coefficient of 0.844 when classifying buildings into the residential and non-residential classes. The experimental results imply three core novel contributions to literature. Firstly, we show that building classification across multiple countries is possible using a multi-source dataset consisting of information about 2D building shape, land use, degree of urbanization, and countries as input, and OSM tags as ground truth. Secondly, our results indicate that GNN models that consider contextual information about building neighborhoods improve predictive performance compared to models that only consider individual buildings and ignore the neighborhood. Thirdly, we show that training with GNNs on localized subgraphs instead of standard GNNs improves performance for the task of building classification.
Related papers
- Extracting the U.S. building types from OpenStreetMap data [0.16060719742433224]
This work creates a comprehensive dataset by providing residential/non-residential building classification covering the entire United States.
We propose and utilize an unsupervised machine learning method to classify building types based on building footprints and available OpenStreetMap information.
The validation shows a high precision for non-residential building classification and a high recall for residential buildings.
arXiv Detail & Related papers (2024-09-09T15:05:27Z) - Fine-Grained Building Function Recognition from Street-View Images via Geometry-Aware Semi-Supervised Learning [18.432786227782803]
We propose a geometry-aware semi-supervised framework for fine-grained building function recognition.
We use geometric relationships among multi-source data to enhance pseudo-label accuracy in semi-supervised learning.
Our proposed framework exhibits superior performance in fine-grained functional recognition of buildings.
arXiv Detail & Related papers (2024-08-18T12:48:48Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
We propose textsfFair textsfMessage textsfPassing (FMP) designed within a unified optimization framework for graph neural networks (GNNs)
In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.
Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets.
arXiv Detail & Related papers (2023-12-19T18:00:15Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
We propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OpenStreetMap data.
The proposed method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters.
The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data.
arXiv Detail & Related papers (2023-07-05T18:16:30Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - BuildingNet: Learning to Label 3D Buildings [19.641000866952815]
BuildingNet: (a) large-scale 3D building models whose exteriors consistently labeled, (b) a neural network that labels building analyzing and structural relations of their geometric primitives.
The dataset covers categories, such as houses, churches, skyscrapers, town halls and castles.
arXiv Detail & Related papers (2021-10-11T01:45:26Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - Mapping Vulnerable Populations with AI [23.732584273099054]
Building functions shall be retrieved by parsing social media data like for instance tweets, as well as ground-based imagery.
Building maps augmented with those additional attributes make it possible to derive more accurate population density maps.
arXiv Detail & Related papers (2021-07-29T15:52:11Z) - Structure-Enhanced Meta-Learning For Few-Shot Graph Classification [53.54066611743269]
This work explores the potential of metric-based meta-learning for solving few-shot graph classification.
An implementation upon GIN, named SMFGIN, is tested on two datasets, Chembl and TRIANGLES.
arXiv Detail & Related papers (2021-03-05T09:03:03Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z) - Deep graph learning for semi-supervised classification [11.260083018676548]
Graph learning (GL) can dynamically capture the distribution structure (graph structure) of data based on graph convolutional networks (GCN)
Existing methods mostly combine the computational layer and the related losses into GCN for exploring the global graph or local graph.
Deep graph learning(DGL) is proposed to find the better graph representation for semi-supervised classification.
arXiv Detail & Related papers (2020-05-29T05:59:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.