MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection
- URL: http://arxiv.org/abs/2409.09724v1
- Date: Sun, 15 Sep 2024 13:08:59 GMT
- Title: MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection
- Authors: Yaning Zhang, Tianyi Wang, Zitong Yu, Zan Gao, Linlin Shen, Shengyong Chen,
- Abstract summary: The rapid development of photo-realistic face generation methods has raised significant concerns in society and academia.
Although existing approaches mainly capture face forgery patterns using image modality, other modalities like fine-grained noises and texts are not fully explored.
We propose a novel multi-modal fine-grained CLIP (MFCLIP) model, which mines comprehensive and fine-grained forgery traces across image-noise modalities.
- Score: 64.29452783056253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of photo-realistic face generation methods has raised significant concerns in society and academia, highlighting the urgent need for robust and generalizable face forgery detection (FFD) techniques. Although existing approaches mainly capture face forgery patterns using image modality, other modalities like fine-grained noises and texts are not fully explored, which limits the generalization capability of the model. In addition, most FFD methods tend to identify facial images generated by GAN, but struggle to detect unseen diffusion-synthesized ones. To address the limitations, we aim to leverage the cutting-edge foundation model, contrastive language-image pre-training (CLIP), to achieve generalizable diffusion face forgery detection (DFFD). In this paper, we propose a novel multi-modal fine-grained CLIP (MFCLIP) model, which mines comprehensive and fine-grained forgery traces across image-noise modalities via language-guided face forgery representation learning, to facilitate the advancement of DFFD. Specifically, we devise a fine-grained language encoder (FLE) that extracts fine global language features from hierarchical text prompts. We design a multi-modal vision encoder (MVE) to capture global image forgery embeddings as well as fine-grained noise forgery patterns extracted from the richest patch, and integrate them to mine general visual forgery traces. Moreover, we build an innovative plug-and-play sample pair attention (SPA) method to emphasize relevant negative pairs and suppress irrelevant ones, allowing cross-modality sample pairs to conduct more flexible alignment. Extensive experiments and visualizations show that our model outperforms the state of the arts on different settings like cross-generator, cross-forgery, and cross-dataset evaluations.
Related papers
- ForgeryGPT: Multimodal Large Language Model For Explainable Image Forgery Detection and Localization [49.992614129625274]
ForgeryGPT is a novel framework that advances the Image Forgery Detection and localization task.
It captures high-order correlations of forged images from diverse linguistic feature spaces.
It enables explainable generation and interactive dialogue through a newly customized Large Language Model (LLM) architecture.
arXiv Detail & Related papers (2024-10-14T07:56:51Z) - Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE) is a novel embedding space specifically designed for deepfake detection.
CoDE is trained via contrastive learning by additionally enforcing global-local similarities.
arXiv Detail & Related papers (2024-07-29T18:00:10Z) - Bi-LORA: A Vision-Language Approach for Synthetic Image Detection [14.448350657613364]
Deep image synthesis techniques, such as generative adversarial networks (GANs) and diffusion models (DMs) have ushered in an era of generating highly realistic images.
This paper takes inspiration from the potent convergence capabilities between vision and language, coupled with the zero-shot nature of vision-language models (VLMs)
We introduce an innovative method called Bi-LORA that leverages VLMs, combined with low-rank adaptation (LORA) tuning techniques, to enhance the precision of synthetic image detection for unseen model-generated images.
arXiv Detail & Related papers (2024-04-02T13:54:22Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
We propose a novel Coarse-to-Fine Latent Diffusion (CFLD) method for Pose-Guided Person Image Synthesis (PGPIS)
A perception-refined decoder is designed to progressively refine a set of learnable queries and extract semantic understanding of person images as a coarse-grained prompt.
arXiv Detail & Related papers (2024-02-28T06:07:07Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - Text-Guided Face Recognition using Multi-Granularity Cross-Modal
Contrastive Learning [0.0]
We introduce text-guided face recognition (TGFR) to analyze the impact of integrating facial attributes in the form of natural language descriptions.
TGFR demonstrates remarkable improvements, particularly on low-quality images, over existing face recognition models.
arXiv Detail & Related papers (2023-12-14T22:04:22Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.