MesonGS: Post-training Compression of 3D Gaussians via Efficient Attribute Transformation
- URL: http://arxiv.org/abs/2409.09756v1
- Date: Sun, 15 Sep 2024 14:58:20 GMT
- Title: MesonGS: Post-training Compression of 3D Gaussians via Efficient Attribute Transformation
- Authors: Shuzhao Xie, Weixiang Zhang, Chen Tang, Yunpeng Bai, Rongwei Lu, Shijia Ge, Zhi Wang,
- Abstract summary: 3D Gaussian Splatting demonstrates excellent quality and speed in novel view synthesis.
The huge file size of the 3D Gaussians presents challenges for transmission and storage.
MesonGS significantly reduces the size of 3D Gaussians while preserving competitive quality.
- Score: 16.68306233403755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D Gaussian Splatting demonstrates excellent quality and speed in novel view synthesis. Nevertheless, the huge file size of the 3D Gaussians presents challenges for transmission and storage. Current works design compact models to replace the substantial volume and attributes of 3D Gaussians, along with intensive training to distill information. These endeavors demand considerable training time, presenting formidable hurdles for practical deployment. To this end, we propose MesonGS, a codec for post-training compression of 3D Gaussians. Initially, we introduce a measurement criterion that considers both view-dependent and view-independent factors to assess the impact of each Gaussian point on the rendering output, enabling the removal of insignificant points. Subsequently, we decrease the entropy of attributes through two transformations that complement subsequent entropy coding techniques to enhance the file compression rate. More specifically, we first replace rotation quaternions with Euler angles; then, we apply region adaptive hierarchical transform to key attributes to reduce entropy. Lastly, we adopt finer-grained quantization to avoid excessive information loss. Moreover, a well-crafted finetune scheme is devised to restore quality. Extensive experiments demonstrate that MesonGS significantly reduces the size of 3D Gaussians while preserving competitive quality.
Related papers
- GaussianSpa: An "Optimizing-Sparsifying" Simplification Framework for Compact and High-Quality 3D Gaussian Splatting [12.342660713851227]
3D Gaussian Splatting (3DGS) has emerged as a mainstream for novel view synthesis, leveraging continuous aggregations of Gaussian functions.
3DGS suffers from substantial memory requirements to store the multitude of Gaussians, hindering its practicality.
We introduce GaussianSpa, an optimization-based simplification framework for compact and high-quality 3DGS.
arXiv Detail & Related papers (2024-11-09T00:38:06Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2 is a novel approach for large-scale scene reconstruction.
We implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence.
Our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs.
arXiv Detail & Related papers (2024-11-01T17:59:31Z) - Fast Feedforward 3D Gaussian Splatting Compression [55.149325473447384]
3D Gaussian Splatting (FCGS) is an optimization-free model that can compress 3DGS representations rapidly in a single feed-forward pass.
FCGS achieves a compression ratio of over 20X while maintaining fidelity, surpassing most per-scene SOTA optimization-based methods.
arXiv Detail & Related papers (2024-10-10T15:13:08Z) - Mipmap-GS: Let Gaussians Deform with Scale-specific Mipmap for Anti-aliasing Rendering [81.88246351984908]
We propose a unified optimization method to make Gaussians adaptive for arbitrary scales.
Inspired by the mipmap technique, we design pseudo ground-truth for the target scale and propose a scale-consistency guidance loss to inject scale information into 3D Gaussians.
Our method outperforms 3DGS in PSNR by an average of 9.25 dB for zoom-in and 10.40 dB for zoom-out.
arXiv Detail & Related papers (2024-08-12T16:49:22Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
We introduce a structured Gaussian representation that can be controlled in 2D image space.
We then constraint the Gaussians, in particular their position, and prevent them from moving independently during optimization.
We demonstrate significant improvements compared to the state-of-the-art sparse-view NeRF-based approaches on a variety of scenes.
arXiv Detail & Related papers (2024-03-28T15:27:13Z) - HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression [55.6351304553003]
3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis.
We propose a Hash-grid Assisted Context (HAC) framework for highly compact 3DGS representation.
Our work is the pioneer to explore context-based compression for 3DGS representation, resulting in a remarkable size reduction of over $75times$ compared to vanilla 3DGS.
arXiv Detail & Related papers (2024-03-21T16:28:58Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
We introduce LightGaussian, a method for transforming 3D Gaussians into a more compact format.
Inspired by Network Pruning, LightGaussian identifies Gaussians with minimal global significance on scene reconstruction.
LightGaussian achieves an average 15x compression rate while boosting FPS from 144 to 237 within the 3D-GS framework.
arXiv Detail & Related papers (2023-11-28T21:39:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.