Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition
- URL: http://arxiv.org/abs/2409.09785v3
- Date: Fri, 18 Oct 2024 07:11:35 GMT
- Title: Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition
- Authors: Chao-Han Huck Yang, Taejin Park, Yuan Gong, Yuanchao Li, Zhehuai Chen, Yen-Ting Lin, Chen Chen, Yuchen Hu, Kunal Dhawan, Piotr Żelasko, Chao Zhang, Yun-Nung Chen, Yu Tsao, Jagadeesh Balam, Boris Ginsburg, Sabato Marco Siniscalchi, Eng Siong Chng, Peter Bell, Catherine Lai, Shinji Watanabe, Andreas Stolcke,
- Abstract summary: We introduce the generative speech transcription error correction (GenSEC) challenge.
This challenge comprises three post-ASR language modeling tasks: (i) post-ASR transcription correction, (ii) speaker tagging, and (iii) emotion recognition.
We discuss insights from baseline evaluations, as well as lessons learned for designing future evaluations.
- Score: 110.8431434620642
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given recent advances in generative AI technology, a key question is how large language models (LLMs) can enhance acoustic modeling tasks using text decoding results from a frozen, pretrained automatic speech recognition (ASR) model. To explore new capabilities in language modeling for speech processing, we introduce the generative speech transcription error correction (GenSEC) challenge. This challenge comprises three post-ASR language modeling tasks: (i) post-ASR transcription correction, (ii) speaker tagging, and (iii) emotion recognition. These tasks aim to emulate future LLM-based agents handling voice-based interfaces while remaining accessible to a broad audience by utilizing open pretrained language models or agent-based APIs. We also discuss insights from baseline evaluations, as well as lessons learned for designing future evaluations.
Related papers
- Recent Advances in Speech Language Models: A Survey [45.968078636811356]
Speech Language Models (SpeechLMs) are end-to-end models that generate speech without converting from text.
This paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs.
arXiv Detail & Related papers (2024-10-01T21:48:12Z) - Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
We are first to explore the potential of prompting speech LMs in the domain of speech processing.
We reformulate speech processing tasks into speech-to-unit generation tasks.
We show that the prompting method can achieve competitive performance compared to the strong fine-tuning method.
arXiv Detail & Related papers (2024-08-23T13:00:10Z) - Leveraging Language ID to Calculate Intermediate CTC Loss for Enhanced
Code-Switching Speech Recognition [5.3545957730615905]
We introduce language identification information into the middle layer of the ASR model's encoder.
We aim to generate acoustic features that imply language distinctions in a more implicit way, reducing the model's confusion when dealing with language switching.
arXiv Detail & Related papers (2023-12-15T07:46:35Z) - Instruction-Following Speech Recognition [21.591086644665197]
We introduce instruction-following speech recognition, training a Listen-Attend-Spell model to understand and execute a diverse set of free-form text instructions.
Remarkably, our model, trained from scratch on Librispeech, interprets and executes simple instructions without requiring Large Language Models or pre-trained speech modules.
arXiv Detail & Related papers (2023-09-18T14:59:10Z) - VioLA: Unified Codec Language Models for Speech Recognition, Synthesis,
and Translation [91.39949385661379]
VioLA is a single auto-regressive Transformer decoder-only network that unifies various cross-modal tasks involving speech and text.
We first convert all the speech utterances to discrete tokens using an offline neural encoder.
We further integrate task IDs (TID) and language IDs (LID) into the proposed model to enhance the modeling capability of handling different languages and tasks.
arXiv Detail & Related papers (2023-05-25T14:39:47Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
We report the first exploration of the prompt tuning paradigm for speech processing tasks based on Generative Spoken Language Model (GSLM)
Experiment results show that the prompt tuning technique achieves competitive performance in speech classification tasks with fewer trainable parameters than fine-tuning specialized downstream models.
arXiv Detail & Related papers (2022-03-31T03:26:55Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - Contextualized Spoken Word Representations from Convolutional
Autoencoders [2.28438857884398]
This paper proposes a Convolutional Autoencoder based neural architecture to model syntactically and semantically adequate contextualized representations of varying length spoken words.
The proposed model was able to demonstrate its robustness when compared to the other two language-based models.
arXiv Detail & Related papers (2020-07-06T16:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.