CROSS-JEM: Accurate and Efficient Cross-encoders for Short-text Ranking Tasks
- URL: http://arxiv.org/abs/2409.09795v1
- Date: Sun, 15 Sep 2024 17:05:35 GMT
- Title: CROSS-JEM: Accurate and Efficient Cross-encoders for Short-text Ranking Tasks
- Authors: Bhawna Paliwal, Deepak Saini, Mudit Dhawan, Siddarth Asokan, Nagarajan Natarajan, Surbhi Aggarwal, Pankaj Malhotra, Jian Jiao, Manik Varma,
- Abstract summary: Transformer-based ranking models are the state-of-the-art approaches for such tasks.
We propose Cross-encoders with Joint Efficient Modeling (CROSS-JEM)
CROSS-JEM enables transformer-based models to jointly score multiple items for a query.
It achieves state-of-the-art accuracy and over 4x lower ranking latency over standard cross-encoders.
- Score: 12.045202648316678
- License:
- Abstract: Ranking a set of items based on their relevance to a given query is a core problem in search and recommendation. Transformer-based ranking models are the state-of-the-art approaches for such tasks, but they score each query-item independently, ignoring the joint context of other relevant items. This leads to sub-optimal ranking accuracy and high computational costs. In response, we propose Cross-encoders with Joint Efficient Modeling (CROSS-JEM), a novel ranking approach that enables transformer-based models to jointly score multiple items for a query, maximizing parameter utilization. CROSS-JEM leverages (a) redundancies and token overlaps to jointly score multiple items, that are typically short-text phrases arising in search and recommendations, and (b) a novel training objective that models ranking probabilities. CROSS-JEM achieves state-of-the-art accuracy and over 4x lower ranking latency over standard cross-encoders. Our contributions are threefold: (i) we highlight the gap between the ranking application's need for scoring thousands of items per query and the limited capabilities of current cross-encoders; (ii) we introduce CROSS-JEM for joint efficient scoring of multiple items per query; and (iii) we demonstrate state-of-the-art accuracy on standard public datasets and a proprietary dataset. CROSS-JEM opens up new directions for designing tailored early-attention-based ranking models that incorporate strict production constraints such as item multiplicity and latency.
Related papers
- ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - Adaptive Retrieval and Scalable Indexing for k-NN Search with Cross-Encoders [77.84801537608651]
Cross-encoder (CE) models which compute similarity by jointly encoding a query-item pair perform better than embedding-based models (dual-encoders) at estimating query-item relevance.
We propose a sparse-matrix factorization based method that efficiently computes latent query and item embeddings to approximate CE scores and performs k-NN search with the approximate CE similarity.
arXiv Detail & Related papers (2024-05-06T17:14:34Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
We propose a Reranking-Truncation joint model (GenRT) that can perform the two tasks concurrently.
GenRT integrates reranking and truncation via generative paradigm based on encoder-decoder architecture.
Our method achieves SOTA performance on both reranking and truncation tasks for web search and retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-02-05T06:52:53Z) - Improving Text Matching in E-Commerce Search with A Rationalizable,
Intervenable and Fast Entity-Based Relevance Model [78.80174696043021]
We propose a novel model called the Entity-Based Relevance Model (EBRM)
The decomposition allows us to use a Cross-encoder QE relevance module for high accuracy.
We also show that pretraining the QE module with auto-generated QE data from user logs can further improve the overall performance.
arXiv Detail & Related papers (2023-07-01T15:44:53Z) - Efficient k-NN Search with Cross-Encoders using Adaptive Multi-Round CUR
Decomposition [77.4863142882136]
Cross-encoder models are prohibitively expensive for direct k-nearest neighbor (k-NN) search.
We propose ADACUR, a method that adaptively, iteratively, and efficiently minimizes the approximation error for the practically important top-k neighbors.
arXiv Detail & Related papers (2023-05-04T17:01:17Z) - Multi-Label Learning to Rank through Multi-Objective Optimization [9.099663022952496]
Learning to Rank technique is ubiquitous in the Information Retrieval system nowadays.
To resolve ambiguity, it is desirable to train a model using many relevance criteria.
We propose a general framework where the information from labels can be combined in a variety of ways to characterize the trade-off among the goals.
arXiv Detail & Related papers (2022-07-07T03:02:11Z) - Retrieve Fast, Rerank Smart: Cooperative and Joint Approaches for
Improved Cross-Modal Retrieval [80.35589927511667]
Current state-of-the-art approaches to cross-modal retrieval process text and visual input jointly, relying on Transformer-based architectures with cross-attention mechanisms that attend over all words and objects in an image.
We propose a novel fine-tuning framework which turns any pretrained text-image multi-modal model into an efficient retrieval model.
Our experiments on a series of standard cross-modal retrieval benchmarks in monolingual, multilingual, and zero-shot setups, demonstrate improved accuracy and huge efficiency benefits over the state-of-the-art cross-encoders.
arXiv Detail & Related papers (2021-03-22T15:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.