論文の概要: A Survey of Out-of-distribution Generalization for Graph Machine Learning from a Causal View
- arxiv url: http://arxiv.org/abs/2409.09858v2
- Date: Wed, 16 Oct 2024 08:23:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 20:46:36.401713
- Title: A Survey of Out-of-distribution Generalization for Graph Machine Learning from a Causal View
- Title(参考訳): 因果的視点から見たグラフ機械学習におけるアウト・オブ・ディストリビューションの一般化に関する調査
- Authors: Jing Ma,
- Abstract要約: グラフ機械学習(GML)は、幅広いタスクでうまく適用されている。
GMLは、アウト・オブ・ディストリビューション(OOD)データを一般化する上で大きな課題に直面している。
近年の進歩は、これらの一般化の課題を克服する上で、因果関係によるアプローチの重要な役割を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 5.651037052334014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph machine learning (GML) has been successfully applied across a wide range of tasks. Nonetheless, GML faces significant challenges in generalizing over out-of-distribution (OOD) data, which raises concerns about its wider applicability. Recent advancements have underscored the crucial role of causality-driven approaches in overcoming these generalization challenges. Distinct from traditional GML methods that primarily rely on statistical dependencies, causality-focused strategies delve into the underlying causal mechanisms of data generation and model prediction, thus significantly improving the generalization of GML across different environments. This paper offers a thorough review of recent progress in causality-involved GML generalization. We elucidate the fundamental concepts of employing causality to enhance graph model generalization and categorize the various approaches, providing detailed descriptions of their methodologies and the connections among them. Furthermore, we explore the incorporation of causality in other related important areas of trustworthy GML, such as explanation, fairness, and robustness. Concluding with a discussion on potential future research directions, this review seeks to articulate the continuing development and future potential of causality in enhancing the trustworthiness of graph machine learning.
- Abstract(参考訳): グラフ機械学習(GML)は、幅広いタスクでうまく適用されている。
それでもGMLは、アウト・オブ・ディストリビューション(OOD)データを一般化する上で、大きな課題に直面している。
近年の進歩は、これらの一般化の課題を克服する上で、因果関係によるアプローチの重要な役割を浮き彫りにしている。
統計的依存に大きく依存する従来のGML手法とは違い、因果性を重視した戦略は、データ生成とモデル予測の根底にある因果的メカニズムを掘り下げ、異なる環境におけるGMLの一般化を著しく改善する。
本稿では,因果関係のGML一般化の最近の進歩を概観する。
本稿では,因果性を利用したグラフモデル一般化の基本的な概念を解明し,様々なアプローチを分類し,それらの方法論とそれらの相互関係を詳細に記述する。
さらに、信頼性の高いGMLの他の重要な領域、例えば説明、公正性、堅牢性における因果関係の組み入れについて検討する。
今後の研究方向性に関する議論をまとめて、このレビューはグラフ機械学習の信頼性を高めるための因果関係の継続的な発展と将来の可能性を明確にすることを目的としている。
関連論文リスト
- Deep Graph Anomaly Detection: A Survey and New Perspectives [86.84201183954016]
グラフ異常検出(GAD)は、異常なグラフインスタンス(ノード、エッジ、サブグラフ、グラフ)を特定することを目的とする。
ディープラーニングアプローチ、特にグラフニューラルネットワーク(GNN)は、GADにとって有望なパラダイムとして現れています。
論文 参考訳(メタデータ) (2024-09-16T03:05:11Z) - Chain-of-Thought Prompting for Demographic Inference with Large Multimodal Models [58.58594658683919]
大規模マルチモーダルモデル (LMM) は、様々な研究課題において変換可能性を示している。
以上の結果から,LMMはゼロショット学習,解釈可能性,未修正入力の処理に長所があることが示唆された。
本稿では,目標外予測問題を効果的に緩和するChain-of-Thought拡張プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T16:26:56Z) - Towards Graph Contrastive Learning: A Survey and Beyond [23.109430624817637]
グラフ上の自己教師型学習(SSL)が注目され、大きな進歩を遂げている。
SSLは、未ラベルのグラフデータから情報表現を生成する機械学習モデルを可能にする。
グラフコントラスト学習(GCL)は既存の文献では十分に研究されていない。
論文 参考訳(メタデータ) (2024-05-20T08:19:10Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
本稿では,ノードレベルの分散シフトの下で頑健なグラフニューラルネットワーク(GNN)をトレーニングするための,概念的に単純だが原則化されたアプローチを提案する。
本手法は,環境推定器と熟練GNN予測器を協調する因果推論に基づく新たな学習目標を提案する。
本モデルでは,様々な分散シフトによる一般化を効果的に向上し,グラフOOD一般化ベンチマーク上での最先端の精度を最大27.4%向上させることができる。
論文 参考訳(メタデータ) (2024-02-18T07:49:22Z) - Few-Shot Causal Representation Learning for Out-of-Distribution Generalization on Heterogeneous Graphs [16.130356170284127]
ヘテロジニアスグラフ(HGs)におけるラベル空間性問題に対処するヘテロジニアスグラフスショットラーニング(HGFL)が開発されている。
本稿では,新しい因果OOD不均質グラフFew-shot学習モデル,すなわちCOHFを提案する。
論文 参考訳(メタデータ) (2024-01-07T22:47:38Z) - Emerging Synergies in Causality and Deep Generative Models: A Survey [35.62192474181619]
深部生成モデル (DGM) は複雑なデータ分布を捉えるのに適することが証明されているが、一般化と解釈可能性に欠けることが多い。
因果性は、データ生成を駆動するメカニズムを理解するための構造化レンズを提供し、これらのプロセスに固有の因果効果のダイナミクスを強調する。
我々は、DGMにおける因果原理の統合を解明し、DGMを用いた因果同定を調査し、大規模生成モデルにおける因果関係の新たな研究フロンティアを探索する。
論文 参考訳(メタデータ) (2023-01-29T04:10:12Z) - Generalizing Goal-Conditioned Reinforcement Learning with Variational
Causal Reasoning [24.09547181095033]
Causal Graphは、オブジェクトとイベントの関係に基づいて構築された構造である。
2つのステップを交互に行う理論性能保証フレームワークを提案する。
我々の業績改善は因果発見、遷移モデリング、政策トレーニングの活発なサイクルに起因する。
論文 参考訳(メタデータ) (2022-07-19T05:31:16Z) - Provable Generalization of Overparameterized Meta-learning Trained with
SGD [62.892930625034374]
我々は、広く使われているメタラーニング手法、モデル非依存メタラーニング(MAML)の一般化について研究する。
我々は、MAMLの過大なリスクに対して、上界と下界の両方を提供し、SGDダイナミクスがこれらの一般化境界にどのように影響するかをキャプチャする。
理論的知見は実験によってさらに検証される。
論文 参考訳(メタデータ) (2022-06-18T07:22:57Z) - A Survey on Heterogeneous Graph Embedding: Methods, Techniques,
Applications and Sources [79.48829365560788]
異種情報ネットワーク (heterogenous information network) としても知られるヘテロジニアスグラフ (HGs) は、現実のシナリオにおいてユビキタス化されている。
HG埋め込みは、下流タスクのための不均一な構造と意味を保ちながら、低次元空間での表現を学習することを目的としている。
論文 参考訳(メタデータ) (2020-11-30T15:03:47Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。