Disentangling the Impact of Quasiparticles and Two-Level Systems on the Statistics of Superconducting Qubit Lifetime
- URL: http://arxiv.org/abs/2409.09926v1
- Date: Mon, 16 Sep 2024 02:02:55 GMT
- Title: Disentangling the Impact of Quasiparticles and Two-Level Systems on the Statistics of Superconducting Qubit Lifetime
- Authors: Shaojiang Zhu, Xinyuan You, Ugur Alyanak, Mustafa Bal, Francesco Crisa, Sabrina Garattoni, Andrei Lunin, Roman Pilipenko, Akshay Murthy, Alexander Romanenko, Anna Grassellino,
- Abstract summary: Temporal fluctuations in the superconducting qubit lifetime, $T_$, bring up additional challenges in building a fault-tolerant quantum computer.
We report $T_$ measurements on the qubits with different geometrical footprints and surface dielectrics as a function of the temperature.
We find that $Gamma_$ variances in the qubit with a small footprint are more susceptible to the QP and TLS fluctuations than those in the large-footprint qubits.
- Score: 31.874825130479174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal fluctuations in the superconducting qubit lifetime, $T_1$, bring up additional challenges in building a fault-tolerant quantum computer. While the exact mechanisms remain unclear, $T_1$ fluctuations are generally attributed to the strong coupling between the qubit and a few near-resonant two-level systems (TLSs) that can exchange energy with an assemble of thermally fluctuating two-level fluctuators (TLFs) at low frequencies. Here, we report $T_1$ measurements on the qubits with different geometrical footprints and surface dielectrics as a function of the temperature. By analyzing the noise spectrum of the qubit depolarization rate, $\Gamma_1 = 1/T_1$, we can disentangle the impact of TLSs, non-equilibrium quasiparticles (QPs), and equilibrium (thermally excited) QPs on the variance in $\Gamma_1$. We find that $\Gamma_1$ variances in the qubit with a small footprint are more susceptible to the QP and TLS fluctuations than those in the large-footprint qubits. Furthermore, the QP-induced variances in all qubits are consistent with the theoretical framework of QP diffusion and fluctuation. We suggest these findings can offer valuable insights for future qubit design and engineering optimization.
Related papers
- Limitations on the maximal level of entanglement of two singlet-triplet
qubits in GaAs quantum dots [0.0]
We analyze in detail a procedure of entangling of two singlet-triplet ($S$-$T_0$) qubits operated in a regime when energy associated with the magnetic field gradient, $Delta B_z$, is an order of magnitude smaller than the exchange energy, $J$, between singlet and triplet states.
arXiv Detail & Related papers (2023-12-27T14:19:22Z) - Finite-frequency noise, Fano factor, $ΔT$-noise and cross-correlations in double quantum dots [0.0]
We study electrical current fluctuations in a double quantum dot connected to electronic reservoirs.
We deriving the finite-frequency noise, the Fano factor and the $Delta T$-noise.
arXiv Detail & Related papers (2023-06-03T16:25:12Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Quantum defects from single surface exhibit strong mutual interactions [0.0]
Two-level system defects constitute a major decoherence source of quantum information science.
We study surface TLSs at the metal-air interface using a quasi-uniform field within vacuum-gap capacitors of resonators.
arXiv Detail & Related papers (2023-02-01T08:53:10Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Multi-qubit time-varying quantum channels for NISQ-era superconducting
quantum processors [0.24466725954625884]
We study the fluctuations of the relaxation times of multi-qubit quantum processors ibmq_quito, ibmq_belem, ibmq_lima, ibmq_santiago and ibmq_santiago.
arXiv Detail & Related papers (2022-07-14T11:50:37Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Linear Response for pseudo-Hermitian Hamiltonian Systems: Application to
PT-Symmetric Qubits [0.0]
We develop the linear response theory formulation suitable for application to various pHH systems.
We apply our results to two textitPT-symmetric non-Hermitian quantum systems.
arXiv Detail & Related papers (2022-06-18T10:05:30Z) - Experimentally revealing anomalously large dipoles in a quantum-circuit
dielectric [50.591267188664666]
Two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum devices.
We show the existence of two distinct ensembles of TLSs, interacting weakly and strongly with phonons.
Results may shed new light on the low temperature characteristics of amorphous solids.
arXiv Detail & Related papers (2021-10-20T19:42:22Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.