Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits
- URL: http://arxiv.org/abs/2208.05461v1
- Date: Wed, 10 Aug 2022 17:39:21 GMT
- Title: Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits
- Authors: Aleksander Kubica, Arbel Haim, Yotam Vaknin, Fernando Brand\~ao, Alex
Retzker
- Abstract summary: amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
- Score: 105.54048699217668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The amplitude damping time, $T_1$, has long stood as the major factor
limiting quantum fidelity in superconducting circuits, prompting concerted
efforts in the material science and design of qubits aimed at increasing $T_1$.
In contrast, the dephasing time, $T_{\phi}$, can usually be extended above
$T_1$ (via, e.g., dynamical decoupling), to the point where it does not limit
fidelity. In this article we propose a scheme for overcoming the conventional
$T_1$ limit on fidelity by designing qubits in a way that amplitude damping
errors can be detected and converted into erasure errors. Compared to standard
qubit implementations our scheme improves the performance of fault-tolerant
protocols, as numerically demonstrated by the circuit-noise simulations of the
surface code. We describe two simple qubit implementations with superconducting
circuits and discuss procedures for detecting amplitude damping errors,
performing entangling gates, and extending $T_\phi$. Our results suggest that
engineering efforts should focus on improving $T_\phi$ and the quality of
quantum coherent control, as they effectively become the limiting factor on the
performance of fault-tolerant protocols.
Related papers
- Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Erasure detection of a dual-rail qubit encoded in a double-post
superconducting cavity [1.8484713576684788]
We implement a dual-rail qubit encoded in a compact, double-post superconducting cavity.
We measure an erasure rate of 3.981 +/- 0.003 (ms)-1 and a residual dephasing error rate up to 0.17 (ms)-1 within the codespace.
arXiv Detail & Related papers (2023-11-08T01:36:51Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Hardware optimized parity check gates for superconducting surface codes [0.0]
Error correcting codes use multi-qubit measurements to realize fault-tolerant quantum logic steps.
We analyze an unconventional surface code based on multi-body interactions between superconducting transmon qubits.
Despite the multi-body effects that underpin this approach, our estimates of logical faults suggest that this design can be at least as robust to realistic noise as conventional designs.
arXiv Detail & Related papers (2022-11-11T18:00:30Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Unimon qubit [42.83899285555746]
Superconducting qubits are one of the most promising candidates to implement quantum computers.
Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator.
arXiv Detail & Related papers (2022-03-11T12:57:43Z) - Scalable Method for Eliminating Residual $ZZ$ Interaction between
Superconducting Qubits [14.178204625914194]
We show a practically approach for complete cancellation of residual $ZZ$ interaction between fixed-frequency transmon qubits.
We verify the cancellation performance by measuring vanishing two-qubit entangling phases and $ZZ$ correlations.
Our method allows independent addressability of each qubit-qubit connection, and is applicable to both nontunable and tunable couplers.
arXiv Detail & Related papers (2021-11-26T02:04:49Z) - Arbitrary controlled-phase gate on fluxonium qubits using differential
ac-Stark shifts [1.8568045743509223]
We show a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits.
Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors.
arXiv Detail & Related papers (2021-03-08T00:02:56Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.