DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval
- URL: http://arxiv.org/abs/2409.10025v2
- Date: Thu, 17 Oct 2024 08:16:52 GMT
- Title: DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval
- Authors: Yifei Xin, Xuxin Cheng, Zhihong Zhu, Xusheng Yang, Yuexian Zou,
- Abstract summary: We present a diffusion-based ATR framework (DiffATR) that generates joint distribution from noise.
Experiments on the AudioCaps and Clotho datasets with superior performances, verify the effectiveness of our approach.
- Score: 49.076590578101985
- License:
- Abstract: Existing audio-text retrieval (ATR) methods are essentially discriminative models that aim to maximize the conditional likelihood, represented as p(candidates|query). Nevertheless, this methodology fails to consider the intrinsic data distribution p(query), leading to difficulties in discerning out-of-distribution data. In this work, we attempt to tackle this constraint through a generative perspective and model the relationship between audio and text as their joint probability p(candidates,query). To this end, we present a diffusion-based ATR framework (DiffATR), which models ATR as an iterative procedure that progressively generates joint distribution from noise. Throughout its training phase, DiffATR is optimized from both generative and discriminative viewpoints: the generator is refined through a generation loss, while the feature extractor benefits from a contrastive loss, thus combining the merits of both methodologies. Experiments on the AudioCaps and Clotho datasets with superior performances, verify the effectiveness of our approach. Notably, without any alterations, our DiffATR consistently exhibits strong performance in out-of-domain retrieval settings.
Related papers
- ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation [21.335983674309475]
Diffusion models suffer from slow inference due to an excessive number of queries to the underlying denoising network per generation.
We introduce ConsistencyTTA, a framework requiring only a single non-autoregressive network query.
We achieve so by proposing "CFG-aware latent consistency model," which adapts consistency generation into a latent space.
arXiv Detail & Related papers (2023-09-19T16:36:33Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
We reformulate the SED problem by taking a generative learning perspective.
Specifically, we aim to generate sound temporal boundaries from noisy proposals in a denoising diffusion process.
During training, our model learns to reverse the noising process by converting noisy latent queries to the groundtruth versions.
arXiv Detail & Related papers (2023-08-14T17:29:41Z) - Adversarial Training of Denoising Diffusion Model Using Dual
Discriminators for High-Fidelity Multi-Speaker TTS [0.0]
The diffusion model is capable of generating high-quality data through a probabilistic approach.
It suffers from the drawback of slow generation speed due to the requirement of a large number of time steps.
We propose a speech synthesis model with two discriminators: a diffusion discriminator for learning the distribution of the reverse process and a spectrogram discriminator for learning the distribution of the generated data.
arXiv Detail & Related papers (2023-08-03T07:22:04Z) - DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion [2.458437232470188]
Class-conditional image generation using generative adversarial networks (GANs) has been investigated through various techniques.
We propose a novel approach for class-conditional image generation using GANs called DuDGAN, which incorporates a dual diffusion-based noise injection process.
Our method outperforms state-of-the-art conditional GAN models for image generation in terms of performance.
arXiv Detail & Related papers (2023-05-24T07:59:44Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - DiffusionRet: Generative Text-Video Retrieval with Diffusion Model [56.03464169048182]
Existing text-video retrieval solutions focus on maximizing the conditional likelihood, i.e., p(candidates|query)
We creatively tackle this task from a generative viewpoint and model the correlation between the text and the video as their joint probability p(candidates,query)
This is accomplished through a diffusion-based text-video retrieval framework (DiffusionRet), which models the retrieval task as a process of gradually generating joint distribution from noise.
arXiv Detail & Related papers (2023-03-17T10:07:19Z) - Improving the Robustness of Summarization Models by Detecting and
Removing Input Noise [50.27105057899601]
We present a large empirical study quantifying the sometimes severe loss in performance from different types of input noise for a range of datasets and model sizes.
We propose a light-weight method for detecting and removing such noise in the input during model inference without requiring any training, auxiliary models, or even prior knowledge of the type of noise.
arXiv Detail & Related papers (2022-12-20T00:33:11Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.