DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion
- URL: http://arxiv.org/abs/2305.14849v2
- Date: Tue, 6 Jun 2023 06:35:25 GMT
- Title: DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion
- Authors: Taesun Yeom, Minhyeok Lee
- Abstract summary: Class-conditional image generation using generative adversarial networks (GANs) has been investigated through various techniques.
We propose a novel approach for class-conditional image generation using GANs called DuDGAN, which incorporates a dual diffusion-based noise injection process.
Our method outperforms state-of-the-art conditional GAN models for image generation in terms of performance.
- Score: 2.458437232470188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Class-conditional image generation using generative adversarial networks
(GANs) has been investigated through various techniques; however, it continues
to face challenges such as mode collapse, training instability, and low-quality
output in cases of datasets with high intra-class variation. Furthermore, most
GANs often converge in larger iterations, resulting in poor iteration efficacy
in training procedures. While Diffusion-GAN has shown potential in generating
realistic samples, it has a critical limitation in generating class-conditional
samples. To overcome these limitations, we propose a novel approach for
class-conditional image generation using GANs called DuDGAN, which incorporates
a dual diffusion-based noise injection process. Our method consists of three
unique networks: a discriminator, a generator, and a classifier. During the
training process, Gaussian-mixture noises are injected into the two noise-aware
networks, the discriminator and the classifier, in distinct ways. This noisy
data helps to prevent overfitting by gradually introducing more challenging
tasks, leading to improved model performance. As a result, our method
outperforms state-of-the-art conditional GAN models for image generation in
terms of performance. We evaluated our method using the AFHQ, Food-101, and
CIFAR-10 datasets and observed superior results across metrics such as FID,
KID, Precision, and Recall score compared with comparison models, highlighting
the effectiveness of our approach.
Related papers
- Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think [72.48325960659822]
One main bottleneck in training large-scale diffusion models for generation lies in effectively learning these representations.
We study this by introducing a straightforward regularization called REPresentation Alignment (REPA), which aligns the projections of noisy input hidden states in denoising networks with clean image representations obtained from external, pretrained visual encoders.
The results are striking: our simple strategy yields significant improvements in both training efficiency and generation quality when applied to popular diffusion and flow-based transformers, such as DiTs and SiTs.
arXiv Detail & Related papers (2024-10-09T14:34:53Z) - DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval [49.076590578101985]
We present a diffusion-based ATR framework (DiffATR) that generates joint distribution from noise.
Experiments on the AudioCaps and Clotho datasets with superior performances, verify the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-16T06:33:26Z) - DifAugGAN: A Practical Diffusion-style Data Augmentation for GAN-based
Single Image Super-resolution [88.13972071356422]
We propose a diffusion-style data augmentation scheme for GAN-based image super-resolution (SR) methods, known as DifAugGAN.
It involves adapting the diffusion process in generative diffusion models for improving the calibration of the discriminator during training.
Our DifAugGAN can be a Plug-and-Play strategy for current GAN-based SISR methods to improve the calibration of the discriminator and thus improve SR performance.
arXiv Detail & Related papers (2023-11-30T12:37:53Z) - Mitigating Exposure Bias in Discriminator Guided Diffusion Models [4.5349436061325425]
We propose SEDM-G++, which incorporates a modified sampling approach, combining Discriminator Guidance and Epsilon Scaling.
Our proposed approach outperforms the current state-of-the-art, by achieving an FID score of 1.73 on the unconditional CIFAR-10 dataset.
arXiv Detail & Related papers (2023-11-18T20:49:50Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
This paper proposes DiffPIR, which integrates the traditional plug-and-play method into the diffusion sampling framework.
Compared to plug-and-play IR methods that rely on discriminative Gaussian denoisers, DiffPIR is expected to inherit the generative ability of diffusion models.
arXiv Detail & Related papers (2023-05-15T20:24:38Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity
in Data-Efficient GANs [24.18718734850797]
Data-Efficient GANs (DE-GANs) aim to learn generative models with a limited amount of training data.
Contrastive learning has shown the great potential of increasing the synthesis quality of DE-GANs.
We propose FakeCLR, which only applies contrastive learning on fake samples.
arXiv Detail & Related papers (2022-07-18T14:23:38Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
Adrial purification refers to a class of defense methods that remove adversarial perturbations using a generative model.
We propose DiffPure that uses diffusion models for adversarial purification.
Our method achieves the state-of-the-art results, outperforming current adversarial training and adversarial purification methods.
arXiv Detail & Related papers (2022-05-16T06:03:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.