論文の概要: Safe and Stable Closed-Loop Learning for Neural-Network-Supported Model Predictive Control
- arxiv url: http://arxiv.org/abs/2409.10171v1
- Date: Mon, 16 Sep 2024 11:03:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 15:50:18.731554
- Title: Safe and Stable Closed-Loop Learning for Neural-Network-Supported Model Predictive Control
- Title(参考訳): ニューラルネットワーク対応モデル予測制御のための安全で安定なクローズドループ学習
- Authors: Sebastian Hirt, Maik Pfefferkorn, Rolf Findeisen,
- Abstract要約: 基礎となるプロセスについて不完全な情報で操作するパラメタライズド予測コントローラの安全な学習について検討する。
本手法は, クローズドループにおけるシステム全体の長期的性能を安全かつ安定に保ちながら重視する。
ベイズ最適化に基づく学習手法に安定性情報を明示的に組み込むことにより,厳密な確率論的安全保証を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe learning of control policies remains challenging, both in optimal control and reinforcement learning. In this article, we consider safe learning of parametrized predictive controllers that operate with incomplete information about the underlying process. To this end, we employ Bayesian optimization for learning the best parameters from closed-loop data. Our method focuses on the system's overall long-term performance in closed-loop while keeping it safe and stable. Specifically, we parametrize the stage cost function of an MPC using a feedforward neural network. This allows for a high degree of flexibility, enabling the system to achieve a better closed-loop performance with respect to a superordinate measure. However, this flexibility also necessitates safety measures, especially with respect to closed-loop stability. To this end, we explicitly incorporated stability information in the Bayesian-optimization-based learning procedure, thereby achieving rigorous probabilistic safety guarantees. The proposed approach is illustrated using a numeric example.
- Abstract(参考訳): 最適制御と強化学習の両方において、制御ポリシーの安全な学習は依然として困難である。
本稿では,基礎となるプロセスに関する不完全な情報とともに動作するパラメータ化予測制御器の安全学習について考察する。
この目的のために、閉ループデータから最適なパラメータを学習するためにベイズ最適化を用いる。
本手法は, クローズドループにおけるシステム全体の長期的性能を安全かつ安定に保ちながら重視する。
具体的には、フィードフォワードニューラルネットワークを用いて、MPCのステージコスト関数をパラメータ化する。
これにより、高レベルの柔軟性が実現され、システムはスーパーオーディネート尺度に関してより優れたクローズドループ性能を達成できる。
しかし、この柔軟性は特に閉ループ安定性に関して安全対策を必要とする。
この目的のために,ベイズ最適化に基づく学習手法に安定性情報を明示的に組み込むことにより,厳密な確率的安全保証を実現する。
提案手法は数値的な例を用いて説明する。
関連論文リスト
- Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
クローズドループ安定性保証による性能ブースティング問題に対処する。
本手法は,安定な非線形システムのための性能ブースティング制御器のニューラルネットワーククラスを任意に学習することを可能にする。
論文 参考訳(メタデータ) (2024-05-01T21:11:29Z) - Stability-informed Bayesian Optimization for MPC Cost Function Learning [5.643541009427271]
本研究では,不完全な情報の下での予測制御パラメータの閉ループ学習について検討する。
フィードフォワードニューラルネットワークとしてパラメータ化されたモデル予測制御器(MPC)コスト関数の学習には,制約付きベイズ最適化を用いる。
Lyapunov 候補として基礎となる MPC の最適値関数を利用して,学習した制御パラメータの安定性制約によってこの枠組みを拡張した。
論文 参考訳(メタデータ) (2024-04-18T13:49:09Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
メタ学習アルゴリズムであるF-PACOHを構築し,データ不足の設定において確実な定量化を実現する。
コアコントリビューションとして、安全に適合した事前をデータ駆動で選択するための新しいフレームワークを開発する。
ベンチマーク関数と高精度動作系において,我々のメタ学習先行が安全なBOアプローチの収束を加速することを示す。
論文 参考訳(メタデータ) (2022-10-03T08:38:38Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
模倣学習問題において,安全な最適化に基づく制御戦略を専門家として扱う。
我々は、実行時に安価に評価でき、専門家と同じ安全保証を確実に満足する学習されたポリシーを訓練する。
論文 参考訳(メタデータ) (2021-02-18T05:11:41Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z) - Neural Lyapunov Model Predictive Control: Learning Safe Global
Controllers from Sub-optimal Examples [4.777323087050061]
多くの実世界の産業アプリケーションでは、例えば人間の操作者による実行など、既存の制御戦略を持つことが典型的である。
この研究の目的は、安全と安定性を維持する新しいコントローラを学習することで、この未知の、安全だが、最適でないポリシーを改善することである。
提案アルゴリズムは、端末コストを学習し、安定性基準に従ってMPCパラメータを更新する。
論文 参考訳(メタデータ) (2020-02-21T16:57:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。