MGSA: Multi-Granularity Graph Structure Attention for Knowledge Graph-to-Text Generation
- URL: http://arxiv.org/abs/2409.10294v2
- Date: Mon, 23 Sep 2024 04:06:16 GMT
- Title: MGSA: Multi-Granularity Graph Structure Attention for Knowledge Graph-to-Text Generation
- Authors: Shanshan Wang, Chun Zhang, Ning Zhang,
- Abstract summary: This paper introduces the Multi-granularity Graph Structure Attention (MGSA), which is based on pre-trained language models (PLMs)
The encoder of the model architecture features an entity-level structure encoding module, a word-level structure encoding module, and an aggregation module that synthesizes information from both structure.
We conducted extensive evaluations of the MGSA model using two widely recognized KG-to-Text Generation benchmark datasets, WebNLG and EventNarrative.
- Score: 10.607080796475815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Knowledge Graph-to-Text Generation task aims to convert structured knowledge graphs into coherent and human-readable natural language text. Recent efforts in this field have focused on enhancing pre-trained language models (PLMs) by incorporating graph structure information to capture the intricate structure details of knowledge graphs. However, most of these approaches tend to capture only single-granularity structure information, concentrating either on the relationships between entities within the original graph or on the relationships between words within the same entity or across different entities. This narrow focus results in a significant limitation: models that concentrate solely on entity-level structure fail to capture the nuanced semantic relationships between words, while those that focus only on word-level structure overlook the broader relationships between original entire entities. To overcome these limitations, this paper introduces the Multi-granularity Graph Structure Attention (MGSA), which is based on PLMs. The encoder of the model architecture features an entity-level structure encoding module, a word-level structure encoding module, and an aggregation module that synthesizes information from both structure. This multi-granularity structure encoding approach allows the model to simultaneously capture both entity-level and word-level structure information, providing a more comprehensive understanding of the knowledge graph's structure information, thereby significantly improving the quality of the generated text. We conducted extensive evaluations of the MGSA model using two widely recognized KG-to-Text Generation benchmark datasets, WebNLG and EventNarrative, where it consistently outperformed models that rely solely on single-granularity structure information, demonstrating the effectiveness of our approach.
Related papers
- Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling [39.14392943549792]
We propose a novel approach called Hierarchical Prompt Tuning (HPT), enabling simultaneous modeling of both structured and conventional linguistic knowledge.
We introduce a relationship-guided attention module to capture pair-wise associations among entities and attributes for low-level prompt learning.
By incorporating high-level and global-level prompts modeling overall semantics, the proposed hierarchical structure forges cross-level interlinks and empowers the model to handle more complex and long-term relationships.
arXiv Detail & Related papers (2024-08-27T06:50:28Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridge is a framework that bridges local and global perspectives by leveraging contextual textual information.
Our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
arXiv Detail & Related papers (2024-06-18T13:35:25Z) - SRFUND: A Multi-Granularity Hierarchical Structure Reconstruction Benchmark in Form Understanding [55.48936731641802]
We present the SRFUND, a hierarchically structured multi-task form understanding benchmark.
SRFUND provides refined annotations on top of the original FUNSD and XFUND datasets.
The dataset includes eight languages including English, Chinese, Japanese, German, French, Spanish, Italian, and Portuguese.
arXiv Detail & Related papers (2024-06-13T02:35:55Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Learning Hierarchical Prompt with Structured Linguistic Knowledge for
Vision-Language Models [43.56153167864033]
We propose a novel approach to harnessing structured knowledge in large language models (LLMs)
We introduce a relationship-guided attention module to capture pair-wise associations among entities and attributes for low-level prompt learning.
In addition, by incorporating high-level and global-level prompts, the proposed hierarchical structure forges cross-level interlinks and empowers the model to handle more complex and long-term relationships.
arXiv Detail & Related papers (2023-12-11T12:14:06Z) - Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal
Structured Representations [70.41385310930846]
We present an end-to-end framework Structure-CLIP to enhance multi-modal structured representations.
We use scene graphs to guide the construction of semantic negative examples, which results in an increased emphasis on learning structured representations.
A Knowledge-Enhance (KEE) is proposed to leverage SGK as input to further enhance structured representations.
arXiv Detail & Related papers (2023-05-06T03:57:05Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.