Bridging Local Details and Global Context in Text-Attributed Graphs
- URL: http://arxiv.org/abs/2406.12608v2
- Date: Mon, 14 Oct 2024 06:44:14 GMT
- Title: Bridging Local Details and Global Context in Text-Attributed Graphs
- Authors: Yaoke Wang, Yun Zhu, Wenqiao Zhang, Yueting Zhuang, Yunfei Li, Siliang Tang,
- Abstract summary: GraphBridge is a framework that bridges local and global perspectives by leveraging contextual textual information.
Our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
- Score: 62.522550655068336
- License:
- Abstract: Representation learning on text-attributed graphs (TAGs) is vital for real-world applications, as they combine semantic textual and contextual structural information. Research in this field generally consist of two main perspectives: local-level encoding and global-level aggregating, respectively refer to textual node information unification (e.g., using Language Models) and structure-augmented modeling (e.g., using Graph Neural Networks). Most existing works focus on combining different information levels but overlook the interconnections, i.e., the contextual textual information among nodes, which provides semantic insights to bridge local and global levels. In this paper, we propose GraphBridge, a multi-granularity integration framework that bridges local and global perspectives by leveraging contextual textual information, enhancing fine-grained understanding of TAGs. Besides, to tackle scalability and efficiency challenges, we introduce a graphaware token reduction module. Extensive experiments across various models and datasets show that our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
Related papers
- MGSA: Multi-Granularity Graph Structure Attention for Knowledge Graph-to-Text Generation [10.607080796475815]
This paper introduces the Multi-granularity Graph Structure Attention (MGSA), which is based on pre-trained language models (PLMs)
The encoder of the model architecture features an entity-level structure encoding module, a word-level structure encoding module, and an aggregation module that synthesizes information from both structure.
We conducted extensive evaluations of the MGSA model using two widely recognized KG-to-Text Generation benchmark datasets, WebNLG and EventNarrative.
arXiv Detail & Related papers (2024-09-16T14:01:03Z) - Node Level Graph Autoencoder: Unified Pretraining for Textual Graph Learning [45.70767623846523]
We propose a novel unified unsupervised learning autoencoder framework, named Node Level Graph AutoEncoder (NodeGAE)
We employ language models as the backbone of the autoencoder, with pretraining on text reconstruction.
Our method maintains simplicity in the training process and demonstrates generalizability across diverse textual graphs and downstream tasks.
arXiv Detail & Related papers (2024-08-09T14:57:53Z) - TAGA: Text-Attributed Graph Self-Supervised Learning by Synergizing Graph and Text Mutual Transformations [15.873944819608434]
Text-Attributed Graphs (TAGs) enhance graph structures with natural language descriptions.
This paper introduces a new self-supervised learning framework, Text-And-Graph Multi-View Alignment (TAGA), which integrates TAGs' structural and semantic dimensions.
Our framework demonstrates strong performance in zero-shot and few-shot scenarios across eight real-world datasets.
arXiv Detail & Related papers (2024-05-27T03:40:16Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
The paper presents a new paradigm for understanding and reasoning about graph data by integrating image encoding and multimodal technologies.
This approach enables the comprehension of graph data through an instruction-response format, utilizing GPT-4V's advanced capabilities.
The study evaluates this paradigm on various graph types, highlighting the model's strengths and weaknesses, particularly in Chinese OCR performance and complex reasoning tasks.
arXiv Detail & Related papers (2023-12-16T08:14:11Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Edge: Enriching Knowledge Graph Embeddings with External Text [32.01476220906261]
We propose a knowledge graph enrichment and embedding framework named Edge.
Given an original knowledge graph, we first generate a rich but noisy augmented graph using external texts in semantic and structural level.
To distill the relevant knowledge and suppress the introduced noise, we design a graph alignment term in a shared embedding space between the original graph and augmented graph.
arXiv Detail & Related papers (2021-04-11T03:47:06Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning [72.52804406378023]
Cross-modal retrieval between videos and texts has attracted growing attentions due to the rapid emergence of videos on the web.
To improve fine-grained video-text retrieval, we propose a Hierarchical Graph Reasoning model, which decomposes video-text matching into global-to-local levels.
arXiv Detail & Related papers (2020-03-01T03:44:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.