論文の概要: Know your limits! Optimize the robot's behavior through self-awareness
- arxiv url: http://arxiv.org/abs/2409.10308v2
- Date: Wed, 16 Oct 2024 09:36:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 20:35:12.598078
- Title: Know your limits! Optimize the robot's behavior through self-awareness
- Title(参考訳): 限界を知る! 自己認識によるロボットの動作の最適化
- Authors: Esteve Valls Mascaro, Dongheui Lee,
- Abstract要約: 最近の人間ロボット模倣アルゴリズムは、高精度な人間の動きを追従することに焦点を当てている。
本稿では,ロボットが参照を模倣する際の動作を予測できるディープラーニングモデルを提案する。
我々のSAW(Self-AWare Model)は、転倒確率、基準運動への固執、滑らかさといった様々な基準に基づいて、潜在的なロボットの挙動をランク付けする。
- 参考スコア(独自算出の注目度): 11.021217430606042
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As humanoid robots transition from labs to real-world environments, it is essential to democratize robot control for non-expert users. Recent human-robot imitation algorithms focus on following a reference human motion with high precision, but they are susceptible to the quality of the reference motion and require the human operator to simplify its movements to match the robot's capabilities. Instead, we consider that the robot should understand and adapt the reference motion to its own abilities, facilitating the operator's task. For that, we introduce a deep-learning model that anticipates the robot's performance when imitating a given reference. Then, our system can generate multiple references given a high-level task command, assign a score to each of them, and select the best reference to achieve the desired robot behavior. Our Self-AWare model (SAW) ranks potential robot behaviors based on various criteria, such as fall likelihood, adherence to the reference motion, and smoothness. We integrate advanced motion generation, robot control, and SAW in one unique system, ensuring optimal robot behavior for any task command. For instance, SAW can anticipate falls with 99.29% accuracy. For more information check our project page: https://evm7.github.io/Self-AWare
- Abstract(参考訳): ヒューマノイドロボットは実験室から現実の環境へ移行するので、非熟練者のためのロボット制御を民主化することが不可欠である。
近年の人間ロボット模倣アルゴリズムは、人間の動きを高精度に追従することに重点を置いているが、それらが参照動作の品質に影響を受けやすいため、ロボットの能力に合わせた動作を単純化する必要がある。
その代わり、ロボットは参照動作を自身の能力に理解し、適応させ、オペレーターの作業を容易にするべきであると考える。
そこで本研究では,特定の参照を模倣する際のロボットの性能を予測できるディープラーニングモデルを提案する。
そこで本システムは,ハイレベルなタスクコマンドを与えられた複数の参照を生成し,それぞれにスコアを割り当て,最適な参照を選択してロボット動作を実現する。
我々のSAW(Self-AWare Model)は、転倒確率、基準運動への固執、滑らかさといった様々な基準に基づいて、潜在的なロボットの挙動をランク付けする。
我々は,高度な動作生成,ロボット制御,SAWを1つのユニークなシステムに統合し,タスクコマンドに対して最適なロボット動作を確保する。
例えば、SAWは99.29%の精度で落下を予測できる。
詳細はプロジェクトのページを参照してください。
関連論文リスト
- LLM Granularity for On-the-Fly Robot Control [3.5015824313818578]
視覚が信頼できない、あるいは利用できない状況では、ロボットを制御するための言語のみに頼ることができるのか?
本研究は,(1)様々な粒度の言語プロンプトに対する補助ロボットの応答を評価し,(2)ロボットのオンザフライ制御の必要性と実現可能性を探る。
論文 参考訳(メタデータ) (2024-06-20T18:17:48Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - RoboCat: A Self-Improving Generalist Agent for Robotic Manipulation [33.10577695383743]
ロボット操作のためのマルチタスク汎用エージェントRoboCatを提案する。
このデータは、シミュレートされた本物のロボットアームから、さまざまな観察とアクションのセットでモーターコントロールスキルの大規模なレパートリーにまたがる。
RoboCatでは、ゼロショットだけでなく、100-1000例のみを用いて適応することで、新しいタスクやロボットに一般化する能力を実証する。
論文 参考訳(メタデータ) (2023-06-20T17:35:20Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - Know Thyself: Transferable Visuomotor Control Through Robot-Awareness [22.405839096833937]
新しいロボットをスクラッチからトレーニングするためには、通常大量のロボット固有のデータを生成する必要がある。
簡単なロボット「自己認識」を活用する「ロボット認識」ソリューションパラダイムを提案する。
シミュレーションおよび実際のロボットにおけるテーブルトップ操作に関する実験により、これらのプラグインの改善により、ビジュモータコントローラの転送性が劇的に向上することを示した。
論文 参考訳(メタデータ) (2021-07-19T17:56:04Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Minimizing Robot Navigation-Graph For Position-Based Predictability By
Humans [20.13307800821161]
人間とロボットが同じ空間を移動しながら独自のタスクを遂行している状況では、予測可能な経路が不可欠である。
ロボットの数が増加するにつれて、人間がロボットの進路を予測するための認知的努力は不可能になる。
そこで本研究では,位置に基づく予測可能性のために,ロボットのナビゲーショングラフを最小化することを提案する。
論文 参考訳(メタデータ) (2020-10-28T22:09:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。