On the Hardness of Meaningful Local Guarantees in Nonsmooth Nonconvex Optimization
- URL: http://arxiv.org/abs/2409.10323v1
- Date: Mon, 16 Sep 2024 14:35:00 GMT
- Title: On the Hardness of Meaningful Local Guarantees in Nonsmooth Nonconvex Optimization
- Authors: Guy Kornowski, Swati Padmanabhan, Ohad Shamir,
- Abstract summary: We show the complexity of cryptographic nonknown regular optimization.
Local algorithms acting on Lipschitz functions cannot, in the worst case, provide meaningful local in terms of value in subexponma minima.
- Score: 37.41427897807821
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the oracle complexity of nonsmooth nonconvex optimization, with the algorithm assumed to have access only to local function information. It has been shown by Davis, Drusvyatskiy, and Jiang (2023) that for nonsmooth Lipschitz functions satisfying certain regularity and strictness conditions, perturbed gradient descent converges to local minimizers asymptotically. Motivated by this result and by other recent algorithmic advances in nonconvex nonsmooth optimization concerning Goldstein stationarity, we consider the question of obtaining a non-asymptotic rate of convergence to local minima for this problem class. We provide the following negative answer to this question: Local algorithms acting on regular Lipschitz functions cannot, in the worst case, provide meaningful local guarantees in terms of function value in sub-exponential time, even when all near-stationary points are global minima. This sharply contrasts with the smooth setting, for which it is well-known that standard gradient methods can do so in a dimension-independent rate. Our result complements the rich body of work in the theoretical computer science literature that provide hardness results conditional on conjectures such as $\mathsf{P}\neq\mathsf{NP}$ or cryptographic assumptions, in that ours holds unconditional of any such assumptions.
Related papers
- An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness [15.656614304616006]
This paper investigates a class of bilevel optimization problems where the upper-level function is non- unbounded smoothness and the lower-level problem is strongly convex.
These problems have significant applications in data learning, such as text classification using neural networks.
arXiv Detail & Related papers (2024-09-28T02:30:44Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - A randomized algorithm for nonconvex minimization with inexact evaluations and complexity guarantees [7.08249229857925]
We consider minimization of a smooth non oracle function with inexact to gradient Hessian.
A novel feature of our method is that if an approximate direction of negative curvature is chosen, we choose a sense relax to be negative with equal gradients.
arXiv Detail & Related papers (2023-10-28T22:57:56Z) - Convex and Non-convex Optimization Under Generalized Smoothness [69.69521650503431]
An analysis of convex and non- optimization methods often requires the Lipsitzness gradient, which limits the analysis by this trajectorys.
Recent work generalizes the gradient setting via the non-uniform smoothness condition.
arXiv Detail & Related papers (2023-06-02T04:21:59Z) - Projective Proximal Gradient Descent for A Class of Nonconvex Nonsmooth Optimization Problems: Fast Convergence Without Kurdyka-Lojasiewicz (KL) Property [19.988762532185884]
Non and nonsmooth optimization problems are important and challenging for learning.
In this paper, we show a new analysis showing fast convergence of PPGD.
arXiv Detail & Related papers (2023-04-20T17:39:24Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - A Local Convergence Theory for the Stochastic Gradient Descent Method in
Non-Convex Optimization With Non-isolated Local Minima [0.0]
Non-isolated minima presents a unique challenge that has remained under-explored.
In this paper, we study the local convergence of the gradient descent method to non-isolated global minima.
arXiv Detail & Related papers (2022-03-21T13:33:37Z) - Tackling benign nonconvexity with smoothing and stochastic gradients [28.197694894254305]
Non- optimization problems are common in machine learning, especially in Deep Learning.
In this paper we show how gradient descent can be used to solve such problems.
arXiv Detail & Related papers (2022-02-18T07:27:32Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.