A randomized algorithm for nonconvex minimization with inexact evaluations and complexity guarantees
- URL: http://arxiv.org/abs/2310.18841v2
- Date: Tue, 26 Mar 2024 17:39:30 GMT
- Title: A randomized algorithm for nonconvex minimization with inexact evaluations and complexity guarantees
- Authors: Shuyao Li, Stephen J. Wright,
- Abstract summary: We consider minimization of a smooth non oracle function with inexact to gradient Hessian.
A novel feature of our method is that if an approximate direction of negative curvature is chosen, we choose a sense relax to be negative with equal gradients.
- Score: 7.08249229857925
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We consider minimization of a smooth nonconvex function with inexact oracle access to gradient and Hessian (without assuming access to the function value) to achieve approximate second-order optimality. A novel feature of our method is that if an approximate direction of negative curvature is chosen as the step, we choose its sense to be positive or negative with equal probability. We allow gradients to be inexact in a relative sense and relax the coupling between inexactness thresholds for the first- and second-order optimality conditions. Our convergence analysis includes both an expectation bound based on martingale analysis and a high-probability bound based on concentration inequalities. We apply our algorithm to empirical risk minimization problems and obtain improved gradient sample complexity over existing works.
Related papers
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes [17.804065824245402]
In machine learning applications, each loss function is non-negative and can be expressed as the composition of a square and its real-valued square root.
We show how to apply the Gauss-Newton method or the Levssquardt method to minimize the average of smooth but possibly non-negative functions.
arXiv Detail & Related papers (2024-07-05T08:53:06Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.