An Approach To Enhance IoT Security In 6G Networks Through Explainable AI
- URL: http://arxiv.org/abs/2410.05310v1
- Date: Fri, 4 Oct 2024 20:14:25 GMT
- Title: An Approach To Enhance IoT Security In 6G Networks Through Explainable AI
- Authors: Navneet Kaur, Lav Gupta,
- Abstract summary: 6G communication has evolved significantly, with 6G offering groundbreaking capabilities, particularly for IoT.
The integration of IoT into 6G presents new security challenges, expanding the attack surface due to vulnerabilities introduced by advanced technologies.
Our research addresses these challenges by utilizing tree-based machine learning algorithms to manage complex datasets and evaluate feature importance.
- Score: 1.9950682531209158
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Wireless communication has evolved significantly, with 6G offering groundbreaking capabilities, particularly for IoT. However, the integration of IoT into 6G presents new security challenges, expanding the attack surface due to vulnerabilities introduced by advanced technologies such as open RAN, terahertz (THz) communication, IRS, massive MIMO, and AI. Emerging threats like AI exploitation, virtualization risks, and evolving attacks, including data manipulation and signal interference, further complicate security efforts. As 6G standards are set to be finalized by 2030, work continues to align security measures with technological advances. However, substantial gaps remain in frameworks designed to secure integrated IoT and 6G systems. Our research addresses these challenges by utilizing tree-based machine learning algorithms to manage complex datasets and evaluate feature importance. We apply data balancing techniques to ensure fair attack representation and use SHAP and LIME to improve model transparency. By aligning feature importance with XAI methods and cross-validating for consistency, we boost model accuracy and enhance IoT security within the 6G ecosystem.
Related papers
- From 5G to 6G: A Survey on Security, Privacy, and Standardization Pathways [21.263571241047178]
The vision for 6G aims to enhance network capabilities with faster data rates, near-zero latency, and higher capacity.
This advancement seeks to enable immersive mixed-reality experiences, holographic communications, and smart city infrastructures.
The expansion of 6G raises critical security and privacy concerns, such as unauthorized access and data breaches.
arXiv Detail & Related papers (2024-10-04T03:03:44Z) - Security, Trust and Privacy challenges in AI-driven 6G Networks [2.362412515574206]
This article explores the evolving infrastructure of 6G networks, emphasizing the transition towards a more disaggregated structure.
It presents a classification of network attacks stemming from its AI-centric architecture and explores technologies designed to detect or mitigate these emerging threats.
The paper concludes by examining the implications and risks linked to the utilization of AI in ensuring a robust network.
arXiv Detail & Related papers (2024-09-16T14:48:20Z) - A Life-long Learning Intrusion Detection System for 6G-Enabled IoV [3.2284427438223013]
6G technology will revolutionize the Internet of Vehicles (IoV) with ultra-high data rates and seamless network coverage.
6G will likely increase the IoV's susceptibility to a spectrum of emerging cyber threats.
This paper presents a novel intrusion detection system leveraging the paradigm of life-long (or continual) learning.
arXiv Detail & Related papers (2024-07-22T15:07:27Z) - Enhancing Physical Layer Communication Security through Generative AI with Mixture of Experts [80.0638227807621]
generative artificial intelligence (GAI) models have demonstrated superiority over conventional AI methods.
MoE, which uses multiple expert models for prediction through a gate mechanism, proposes possible solutions.
arXiv Detail & Related papers (2024-05-07T11:13:17Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
The integration of Internet of Things (IoT) applications in our daily lives has led to a surge in data traffic, posing significant security challenges.
This paper focuses on improving the effectiveness of ML-based IDS at the edge level by introducing a novel method to find a balanced trade-off between cost and accuracy.
arXiv Detail & Related papers (2024-04-29T21:26:18Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
We propose a 6G native AI framework based on foundation models, provide a customization approach for intent-aware PFM, and outline a novel cloud-edge-end collaboration paradigm.
As a practical use case, we apply this framework for orchestration, achieving the maximum sum rate within a wireless communication system.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - Network and Physical Layer Attacks and countermeasures to AI-Enabled 6G
O-RAN [1.7811776494967646]
This paper examines the security implications of AI-driven 6G radio access networks (RANs)
The Open RAN (O-RAN) describes an industry-driven open architecture and interfaces for building next generation RANs with AI control.
arXiv Detail & Related papers (2021-06-01T16:36:37Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z) - Federated Learning for 6G Communications: Challenges, Methods, and
Future Directions [71.31783903289273]
We introduce the integration of 6G and federated learning and provide potential federated learning applications for 6G.
We describe key technical challenges, the corresponding federated learning methods, and open problems for future research on federated learning in the context of 6G communications.
arXiv Detail & Related papers (2020-06-04T15:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.