論文の概要: VAE-QWGAN: Addressing Mode Collapse in Quantum GANs via Autoencoding Priors
- arxiv url: http://arxiv.org/abs/2409.10339v2
- Date: Thu, 22 May 2025 00:46:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.645523
- Title: VAE-QWGAN: Addressing Mode Collapse in Quantum GANs via Autoencoding Priors
- Title(参考訳): VAE-QWGAN:オートエンコーディングプリミティブによる量子GANのモード崩壊への対処
- Authors: Aaron Mark Thomas, Harry Youel, Sharu Theresa Jose,
- Abstract要約: VAE-QWGANは、古典的変分オートエンコーダ(VAE)とハイブリッド量子ワッサーシュタインGAN(QWGAN)の強度を組み合わせる
VAE-QWGANは既存のQGANアプローチよりも大幅に改善されていることを示す。
- 参考スコア(独自算出の注目度): 3.823356975862005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent proposals for quantum generative adversarial networks (GANs) suffer from the issue of mode collapse, analogous to classical GANs, wherein the distribution learnt by the GAN fails to capture the high mode complexities of the target distribution. Mode collapse can arise due to the use of uninformed prior distributions in the generative learning task. To alleviate the issue of mode collapse for quantum GANs, this work presents a novel \textbf{hybrid quantum-classical generative model}, the VAE-QWGAN, which combines the strengths of a classical Variational AutoEncoder (VAE) with a hybrid Quantum Wasserstein GAN (QWGAN). The VAE-QWGAN fuses the VAE decoder and QWGAN generator into a single quantum model, and utilizes the VAE encoder for data-dependant latent vector sampling during training. This in turn, enhances the diversity and quality of generated images. To generate new data from the trained model at inference, we sample from a Gaussian mixture model (GMM) prior that is learnt on the latent vectors generated during training. We conduct extensive experiments for image generation QGANs on MNIST/Fashion-MNIST datasets and compute a range of metrics that measure the diversity and quality of generated samples. We show that VAE-QWGAN demonstrates significant improvement over existing QGAN approaches.
- Abstract(参考訳): 量子生成逆数ネットワーク(GAN)の最近の提案は、古典的なGANと類似したモード崩壊の問題に悩まされており、GANが学習した分布は、ターゲット分布の高モード複雑度を捉えることができない。
モード崩壊は、生成学習タスクにおいて、インフォームドされていない事前分布を使用することによって起こりうる。
量子GANのモード崩壊の問題を緩和するため、この研究は古典的変分オートエンコーダ(VAE)とハイブリッド量子ワッサースタインGAN(QWGAN)の強みを組み合わせた新しいVAE-QWGAN(英語版)を提示する。
VAE-QWGANは、VAEデコーダとQWGANジェネレータを単一の量子モデルに融合し、トレーニング中にデータ依存潜在ベクトルサンプリングにVAEエンコーダを使用する。
これにより、生成された画像の多様性と品質が向上する。
推論時にトレーニングされたモデルから新しいデータを生成するために、トレーニング中に生成された潜在ベクトルから学習されるガウス混合モデル(GMM)をサンプリングした。
我々は、MNIST/Fashion-MNISTデータセット上で画像生成QGANの広範な実験を行い、生成したサンプルの多様性と品質を測定する様々な指標を計算した。
VAE-QWGANは既存のQGANアプローチよりも大幅に改善されていることを示す。
関連論文リスト
- Improving GANs by leveraging the quantum noise from real hardware [0.0]
本稿では,GAN(生成逆数ネットワーク)に対する新しいアプローチを提案する。
固有量子乱数性とデバイス固有の不完全性は、GAN性能を高める構造的帰納バイアスを与えることができることを示す。
論文 参考訳(メタデータ) (2025-07-02T16:56:09Z) - Text Generation Beyond Discrete Token Sampling [75.96920867382859]
入力の混合(Mixture of Inputs, MoI)は、自動回帰生成のためのトレーニング不要な方法である。
MoIはQwQ-32B、Nemotron-Super-49B、Gemma-3-27B、DAPO-Qwen-32Bを含む複数のモデルのパフォーマンスを継続的に改善している。
論文 参考訳(メタデータ) (2025-05-20T18:41:46Z) - Quantum Generative Models for Image Generation: Insights from MNIST and MedMNIST [0.0]
本稿では,固有量子発生雑音と調整ノイズスケジューリング機構の2つの新しいノイズ戦略を紹介する。
我々は,MNISTデータセットとMedMNISTデータセットのモデル評価を行い,その実現可能性と性能について検討した。
論文 参考訳(メタデータ) (2025-03-30T06:36:22Z) - Investigating Parameter-Efficiency of Hybrid QuGANs Based on Geometric Properties of Generated Sea Route Graphs [3.9456729020535013]
我々はQuGAN(Quarum-classical Hybrid Generative Adversarial Network)を用いて,輸送経路のグラフを人工的に生成する。
我々は、QuGANと古典的生成逆ネットワーク(GAN)の比較を行う。
以上の結果から,QuGANは基底となる幾何学的性質や分布を素早く学習し,表現できることが示唆された。
論文 参考訳(メタデータ) (2025-01-15T09:08:05Z) - Quantum Down Sampling Filter for Variational Auto-encoder [0.504868948270058]
変分オートエンコーダ(VAE)は、生成モデリングと画像再構成の基礎となる。
本研究では,量子変分オートエンコーダ(Q-VAE)のハイブリッドモデルを提案する。
Q-VAEはエンコーダに量子符号化を統合し、完全に接続された層を利用して意味のある表現を抽出する。
論文 参考訳(メタデータ) (2025-01-09T11:08:55Z) - Efficient Generative Modeling with Residual Vector Quantization-Based Tokens [5.949779668853557]
ResGenは、サンプリング速度を損なうことなく高忠実度サンプルを生成する効率的なRVQベースの離散拡散モデルである。
我々は,ImageNet 256x256における条件付き画像生成とゼロショット音声合成の2つの課題に対して,提案手法の有効性と一般化性を検証する。
RVQの深さを拡大するにつれて、我々の生成モデルは、同様の大きさのベースラインモデルと比較して、より優れた生成忠実度またはより高速なサンプリング速度を示す。
論文 参考訳(メタデータ) (2024-12-13T15:31:17Z) - A Matrix Product State Model for Simultaneous Classification and Generation [0.8192907805418583]
量子機械学習(Quantum Machine Learning, QML)は、量子コンピューティングの原理と機械学習の技法を融合させる、急速に拡大する分野である。
本稿では,MPSが分類器と生成器の両方として機能する新しい行列積状態(MPS)モデルを提案する。
我々のコントリビューションは、生成タスクのためのテンソルネットワークメソッドのメカニズムに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-06-25T10:23:36Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - Approximately Equivariant Quantum Neural Network for $p4m$ Group
Symmetries in Images [30.01160824817612]
本研究では、平面$p4m$対称性に基づく画像分類のための同変量子畳み込みニューラルネットワーク(EquivQCNNs)を提案する。
2次元イジングモデルの位相検出や拡張MNISTデータセットの分類など、さまざまなユースケースでテストされた結果を示す。
論文 参考訳(メタデータ) (2023-10-03T18:01:02Z) - A Bayesian Non-parametric Approach to Generative Models: Integrating Variational Autoencoder and Generative Adversarial Networks using Wasserstein and Maximum Mean Discrepancy [2.5109359014278954]
本稿では,GAN(generative adversarial network)とVAE(variantal autoencoder)において,いくつかの顕著な障害モードに対処する,ベイズ非パラメトリック学習(BNPL)フレームワークの新たな生成モデルを提案する。
我々は、BNPLフレームワークがトレーニングの安定性を高め、WMMD(Wsserstein distance and maximum mean discrepancy measure)をモデルの損失関数に組み込む際に、堅牢性と精度の保証を提供することを示す。
論文 参考訳(メタデータ) (2023-08-27T08:58:31Z) - Learning hard distributions with quantum-enhanced Variational
Autoencoders [2.545905720487589]
量子相関を用いて古典的VAEの忠実度を向上させる量子強化型VAE(QeVAE)を提案する。
経験的に、QeVAEは量子状態のいくつかのクラスにおいて古典的モデルよりも優れていることを示す。
我々の研究は、量子生成学習アルゴリズムの新しい応用の道を開いた。
論文 参考訳(メタデータ) (2023-05-02T16:50:24Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes [23.682509357305406]
オートエンコーダとその変種は表現学習と生成モデリングにおいて最も広く使われているモデルの一つである。
ベイジアンオートエンコーダの潜在空間に完全スパースガウスプロセス先行を課す新しいスパースガウスプロセスベイジアンオートエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-02-09T09:57:51Z) - Hybrid Quantum-Classical Generative Adversarial Network for High
Resolution Image Generation [14.098992977726942]
量子機械学習(QML)は、古典的な機械学習手法を様々な問題で上回る可能性を秘め、注目を集めている。
QML手法のサブクラスは量子生成逆数ネットワーク(QGAN)であり、古典的なGANの量子対数として研究されている。
ここでは、古典的および量子的手法を統合し、新しいハイブリッド量子古典的GANフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-22T11:18:35Z) - FewGAN: Generating from the Joint Distribution of a Few Images [95.6635227371479]
本稿では,新しい,高品質で多様な画像を生成するための生成モデルFewGANを紹介する。
FewGANは、第1の粗いスケールで量子化を適用した階層的なパッチGANであり、その後、より微細なスケールで残った完全畳み込みGANのピラミッドが続く。
大規模な実験では、FewGANは定量的にも定性的にも基線より優れていることが示されている。
論文 参考訳(メタデータ) (2022-07-18T07:11:28Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
本稿では,ClusterQと呼ばれるデータフリーな量子化手法を提案する。
意味的特徴のクラス間分離性を高めるために,特徴分布統計をクラスタ化し,整列する。
また、クラス内分散を組み込んで、クラスワイドモードの崩壊を解決する。
論文 参考訳(メタデータ) (2022-04-30T06:58:56Z) - A new perspective on probabilistic image modeling [92.89846887298852]
本稿では,密度推定,サンプリング,トラクタブル推論が可能な画像モデリングのための新しい確率論的手法を提案する。
DCGMMは、CNNのように、ランダムな初期条件からSGDによってエンドツーエンドに訓練することができる。
本研究は,近年のPCおよびSPNモデルと,推論,分類,サンプリングの観点から比較した。
論文 参考訳(メタデータ) (2022-03-21T14:53:57Z) - Diffusion bridges vector quantized Variational AutoEncoders [0.0]
我々のモデルは,ミニイメージネットデータセットに先行する自己回帰と競合することを示す。
我々のフレームワークは、標準のVQ-VAEを拡張し、エンドツーエンドのトレーニングを可能にします。
論文 参考訳(メタデータ) (2022-02-10T08:38:12Z) - Controllable and Compositional Generation with Latent-Space Energy-Based
Models [60.87740144816278]
制御可能な生成は、現実世界のアプリケーションで深層生成モデルの採用を成功させる上で重要な要件の1つである。
本研究では, エネルギーモデル(EBM)を用いて, 属性の集合上での合成生成を扱う。
エネルギー関数を論理演算子と合成することにより、分解能1024x1024のフォトリアリスティック画像を生成する際に、このような構成性を実現するのはこれが初めてである。
論文 参考訳(メタデータ) (2021-10-21T03:31:45Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z) - Anomaly detection with variational quantum generative adversarial
networks [0.0]
GAN(Generative Adversarial Network)は、ターゲット分布からサンプリングする生成モデルを含む機械学習フレームワークである。
これらの問題に対処するために、変分量子古典ワッサースタインGANを導入し、このモデルを古典的な機械学習フレームワークに組み込んで異常検出を行う。
我々のモデルは、ワッサースタインGANのジェネレータをハイブリッド量子古典ニューラルネットに置き換え、古典的な判別モデルをそのまま残す。
論文 参考訳(メタデータ) (2020-10-20T17:48:04Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
深層学習の成功に基づいて、GAN(Generative Adversarial Networks)は、観測されたサンプルから確率分布を学習するための現代的なアプローチを提供する。
GANはしばしば、ジェネレータが入力分布の既存のすべてのモードをキャプチャできないモード崩壊問題に悩まされる。
情報理論のアプローチを採り、生成したサンプルのエントロピーの変動的下限を最大化し、それらの多様性を増大させる。
論文 参考訳(メタデータ) (2020-09-24T19:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。