TPFL: Tsetlin-Personalized Federated Learning with Confidence-Based Clustering
- URL: http://arxiv.org/abs/2409.10392v4
- Date: Sun, 24 Nov 2024 07:29:50 GMT
- Title: TPFL: Tsetlin-Personalized Federated Learning with Confidence-Based Clustering
- Authors: Rasoul Jafari Gohari, Laya Aliahmadipour, Ezat Valipour,
- Abstract summary: We propose a novel approach called Tsetlin-Personalized Federated Learning.
In this way, models are grouped into clusters based on their confidence towards a specific class.
Clients share only what they are confident about, resulting in the elimination of wrongful weight aggregation.
Results demonstrated that TPFL performance better than baseline methods with 98.94% accuracy on MNIST, 98.52% accuracy on FashionMNIST and 91.16% accuracy on FEMNIST dataset.
- Score: 0.0
- License:
- Abstract: The world of Machine Learning (ML) has witnessed rapid changes in terms of new models and ways to process users data. The majority of work that has been done is focused on Deep Learning (DL) based approaches. However, with the emergence of new algorithms such as the Tsetlin Machine (TM) algorithm, there is growing interest in exploring alternative approaches that may offer unique advantages in certain domains or applications. One of these domains is Federated Learning (FL), in which users privacy is of utmost importance. Due to its novelty, FL has seen a surge in the incorporation of personalization techniques to enhance model accuracy while maintaining user privacy under personalized conditions. In this work, we propose a novel approach called TPFL: Tsetlin-Personalized Federated Learning, in which models are grouped into clusters based on their confidence towards a specific class. In this way, clustering can benefit from two key advantages. Firstly, clients share only what they are confident about, resulting in the elimination of wrongful weight aggregation among clients whose data for a specific class may have not been enough during the training. This phenomenon is prevalent when the data are non-Independent and Identically Distributed (non-IID). Secondly, by sharing only weights towards a specific class, communication cost is substantially reduced, making TPLF efficient in terms of both accuracy and communication cost. The TPFL results were compared with 6 other baseline methods; namely FedAvg, FedProx, FLIS DC, FLIS HC, IFCA and FedTM. The results demonstrated that TPFL performance better than baseline methods with 98.94% accuracy on MNIST, 98.52% accuracy on FashionMNIST and 91.16% accuracy on FEMNIST dataset.
Related papers
- FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
Federated learning (FL) is an emerging distributed machine learning paradigm.
One of the major challenges in FL is the presence of uneven data distributions across client devices.
We propose em FedClust, a novel approach for CFL that leverages the correlation between local model weights and the data distribution of clients.
arXiv Detail & Related papers (2024-07-09T02:47:16Z) - Exploiting Label Skews in Federated Learning with Model Concatenation [39.38427550571378]
Federated Learning (FL) has emerged as a promising solution to perform deep learning on different data owners without exchanging raw data.
Among different non-IID types, label skews have been challenging and common in image classification and other tasks.
We propose FedConcat, a simple and effective approach that degrades these local models as the base of the global model.
arXiv Detail & Related papers (2023-12-11T10:44:52Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - pFedSim: Similarity-Aware Model Aggregation Towards Personalized
Federated Learning [27.668944118750115]
federated learning (FL) paradigm emerges to preserve data privacy during model training.
One of biggest challenges in FL lies in the non-IID (not identical and independently distributed) data.
We propose a novel pFedSim (pFL based on model similarity) algorithm in this work.
arXiv Detail & Related papers (2023-05-25T04:25:55Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - FedSEAL: Semi-Supervised Federated Learning with Self-Ensemble Learning
and Negative Learning [7.771967424619346]
Federated learning (FL) is a popular decentralized and privacy-preserving machine learning (FL) framework.
In this paper, we propose a new FL algorithm, called FedSEAL, to solve this Semi-Supervised Federated Learning (SSFL) problem.
Our algorithm utilizes self-ensemble learning and complementary negative learning to enhance both the accuracy and the efficiency of clients' unsupervised learning on unlabeled data.
arXiv Detail & Related papers (2021-10-15T03:03:23Z) - Unifying Distillation with Personalization in Federated Learning [1.8262547855491458]
Federated learning (FL) is a decentralized privacy-preserving learning technique in which clients learn a joint collaborative model through a central aggregator without sharing their data.
In this setting, all clients learn a single common predictor (FedAvg), which does not generalize well on each client's local data due to the statistical data heterogeneity among clients.
In this paper, we address this problem with PersFL, a two-stage personalized learning algorithm.
In the first stage, PersFL finds the optimal teacher model of each client during the FL training phase. In the second stage, PersFL distills the useful knowledge from
arXiv Detail & Related papers (2021-05-31T17:54:29Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.