論文の概要: Learning Semi-Supervised Medical Image Segmentation from Spatial Registration
- arxiv url: http://arxiv.org/abs/2409.10422v1
- Date: Mon, 16 Sep 2024 15:52:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 14:48:31.397812
- Title: Learning Semi-Supervised Medical Image Segmentation from Spatial Registration
- Title(参考訳): 空間登録による半監督型医用画像分割の学習
- Authors: Qianying Liu, Paul Henderson, Xiao Gu, Hang Dai, Fani Deligianni,
- Abstract要約: CCT-Rは、登録情報を組み込んだ対照的なクロスティーチングフレームワークである。
ボリュームペア間の登録で利用可能な意味情報を活用するために、CCT-Rは2つの提案されたモジュールを組み込んでいる。
各種半教師付き環境におけるCCT-Rの有効性と優位性について実験的に検証した。
- 参考スコア(独自算出の注目度): 20.08775594086033
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Semi-supervised medical image segmentation has shown promise in training models with limited labeled data and abundant unlabeled data. However, state-of-the-art methods ignore a potentially valuable source of unsupervised semantic information -- spatial registration transforms between image volumes. To address this, we propose CCT-R, a contrastive cross-teaching framework incorporating registration information. To leverage the semantic information available in registrations between volume pairs, CCT-R incorporates two proposed modules: Registration Supervision Loss (RSL) and Registration-Enhanced Positive Sampling (REPS). The RSL leverages segmentation knowledge derived from transforms between labeled and unlabeled volume pairs, providing an additional source of pseudo-labels. REPS enhances contrastive learning by identifying anatomically-corresponding positives across volumes using registration transforms. Experimental results on two challenging medical segmentation benchmarks demonstrate the effectiveness and superiority of CCT-R across various semi-supervised settings, with as few as one labeled case. Our code is available at https://github.com/kathyliu579/ContrastiveCross-teachingWithRegistration.
- Abstract(参考訳): 半教師付き医療画像セグメンテーションは、ラベル付きデータと豊富なラベル付きデータによるトレーニングモデルにおいて有望であることを示している。
しかし、最先端の手法は、イメージボリューム間の空間的登録変換である教師なしの意味情報の潜在的に価値のある情報源を無視している。
そこで本稿では,登録情報を組み込んだ相互学習フレームワークであるCCT-Rを提案する。
ボリュームペア間の登録で利用可能なセマンティック情報を活用するために、CCT-Rは2つの提案されたモジュール、登録スーパービジョンロス(RSL)と登録強化正サンプリング(REPS)を組み込んでいる。
RSLはラベル付きとラベルなしのボリュームペア間の変換から派生したセグメンテーション知識を活用し、擬似ラベルのさらなる情報源を提供する。
REPSは、登録変換を用いてボリューム間で解剖学的に対応している正を識別することで、対照的な学習を強化する。
CCT-RとCCT-Rの半教師付きセグメンテーションにおける有効性と優位性を示す2つの試験結果が得られた。
私たちのコードはhttps://github.com/kathyliu579/ContrastiveCross-teachingWithRegistrationで利用可能です。
関連論文リスト
- SAMReg: SAM-enabled Image Registration with ROI-based Correspondence [12.163299991979574]
本稿では,医療用画像登録のための対の関心領域(ROI)に基づく新しい空間対応表現について述べる。
我々は,トレーニング(あるいはトレーニングデータ)や勾配に基づく微調整,即時的なエンジニアリングを必要としない新しい登録アルゴリズムSAMRegを開発した。
提案手法は,試験指標間でのインテンシティベース反復アルゴリズムとDDF予測学習ベースネットワークより優れている。
論文 参考訳(メタデータ) (2024-10-17T23:23:48Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - AdLER: Adversarial Training with Label Error Rectification for One-Shot
Medical Image Segmentation [24.902447478719303]
逆トレーニングとラベル誤り訂正(AdLER)を併用した新しいワンショット医用画像分割法を提案する。
具体的には、新しい二重整合性制約を実装し、解剖学的整合性を保証し、登録エラーを低減する。
また,アトラス画像を増大させるための対角的トレーニング戦略も開発し,世代多様性とセグメンテーションの堅牢性を両立させる。
論文 参考訳(メタデータ) (2023-09-02T16:06:50Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
セグメント化誘導深層登録網に関連臓器の構造情報を組み込んだ構造認識型登録手法を提案する。
提案手法は,最新技術よりも高い登録精度を達成し,解剖学的構造を効果的に維持することができる。
論文 参考訳(メタデータ) (2023-03-08T14:08:56Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
我々は、RCPS(Rectified Contrastive Pseudo Supervision)という、新しい半教師付きセグメンテーション手法を提案する。
RCPSは、修正された疑似監督とボクセルレベルのコントラスト学習を組み合わせて、半教師付きセグメンテーションの有効性を向上させる。
実験結果から, 半教師付き医用画像分割における最先端手法と比較して, 高いセグメンテーション性能が得られた。
論文 参考訳(メタデータ) (2023-01-13T12:03:58Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
半教師型医用画像セグメンテーションにおける局所特徴の表現能力を高めるためのクロスレベルコンストラシティブ学習手法を提案する。
クロスレベルなコントラスト学習と一貫性制約の助けを借りて、非ラベル付きデータを効果的に探索してセグメンテーション性能を向上させることができる。
論文 参考訳(メタデータ) (2022-02-08T15:12:11Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - RAR-U-Net: a Residual Encoder to Attention Decoder by Residual
Connections Framework for Spine Segmentation under Noisy Labels [9.81466618834274]
本稿では,ノイズラベルに基づく医用画像分割手法を提案する。
この方法は4つの新しいコントリビューションを取り入れ、ディープラーニングパラダイムの下で機能する。
実験結果は,脊椎CTのベンチマークデータベース上で公開されている。
論文 参考訳(メタデータ) (2020-09-27T15:32:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。