論文の概要: Exploring 3D Face Reconstruction and Fusion Methods for Face Verification: A Case-Study in Video Surveillance
- arxiv url: http://arxiv.org/abs/2409.10481v1
- Date: Mon, 16 Sep 2024 17:17:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 14:48:31.363619
- Title: Exploring 3D Face Reconstruction and Fusion Methods for Face Verification: A Case-Study in Video Surveillance
- Title(参考訳): 顔認証のための3次元顔再構成と融合法:ビデオサーベイランスにおけるケーススタディ
- Authors: Simone Maurizio La Cava, Sara Concas, Ruben Tolosana, Roberto Casula, Giulia Orrù, Martin Drahansky, Julian Fierrez, Gian Luca Marcialis,
- Abstract要約: 3次元顔再構成(3DFR)アルゴリズムは、異なるアプリケーションシナリオに適した特定の仮定に基づいている。
異なる3DFRアルゴリズムによって誘導される相補性は、カメラから見知らぬ距離でテストを行う際に、性能を向上させる。
- 参考スコア(独自算出の注目度): 6.277064632667653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D face reconstruction (3DFR) algorithms are based on specific assumptions tailored to distinct application scenarios. These assumptions limit their use when acquisition conditions, such as the subject's distance from the camera or the camera's characteristics, are different than expected, as typically happens in video surveillance. Additionally, 3DFR algorithms follow various strategies to address the reconstruction of a 3D shape from 2D data, such as statistical model fitting, photometric stereo, or deep learning. In the present study, we explore the application of three 3DFR algorithms representative of the SOTA, employing each one as the template set generator for a face verification system. The scores provided by each system are combined by score-level fusion. We show that the complementarity induced by different 3DFR algorithms improves performance when tests are conducted at never-seen-before distances from the camera and camera characteristics (cross-distance and cross-camera settings), thus encouraging further investigations on multiple 3DFR-based approaches.
- Abstract(参考訳): 3次元顔再構成(3DFR)アルゴリズムは、異なるアプリケーションシナリオに適した特定の仮定に基づいている。
これらの仮定は、被写体がカメラからの距離やカメラの特徴などの取得条件が、通常ビデオ監視で起こるように、期待と異なる場合に使用を制限する。
さらに、3DFRアルゴリズムは、統計モデルフィッティング、測光ステレオ、深層学習などの2次元データから3次元形状を復元するための様々な戦略に従う。
本研究では,顔認証システムのためのテンプレートセット生成器として,SOTAを代表とする3つの3次元FRアルゴリズムの適用について検討する。
各システムが提供するスコアは、スコアレベルの融合によって結合される。
異なる3DFRアルゴリズムによって誘導される相補性は、カメラ特性とカメラ特性(クロス距離およびクロスカメラ設定)から不可視距離でテストを行う場合に性能が向上することを示し、複数の3DFRベースのアプローチについてさらなる調査を奨励する。
関連論文リスト
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
モノクル3Dオブジェクト検出は、自律運転やロボティクスなど、さまざまなアプリケーションにおいて重要な役割を担っている。
本稿では,VFMM3Dを提案する。VFMM3Dは,ビジョンファウンデーションモデル(VFM)の機能を利用して,単一ビュー画像を正確にLiDARポイントクラウド表現に変換する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-04-15T03:12:12Z) - MVD-Fusion: Single-view 3D via Depth-consistent Multi-view Generation [54.27399121779011]
本稿では,多視点RGB-D画像の生成モデルを用いて,単視点3次元推論を行うMVD-Fusionを提案する。
提案手法は,蒸留に基づく3D推論や先行多視点生成手法など,最近の最先端技術と比較して,より正確な合成を実現することができることを示す。
論文 参考訳(メタデータ) (2024-04-04T17:59:57Z) - OV-Uni3DETR: Towards Unified Open-Vocabulary 3D Object Detection via Cycle-Modality Propagation [67.56268991234371]
OV-Uni3DETRは、様々なシナリオにおける最先端のパフォーマンスを達成し、既存のメソッドを平均6%以上上回っている。
コードと事前訓練されたモデルは、後にリリースされる。
論文 参考訳(メタデータ) (2024-03-28T17:05:04Z) - Geometry-Biased Transformer for Robust Multi-View 3D Human Pose
Reconstruction [3.069335774032178]
マルチビュー2次元ポーズシーケンスから3次元ポーズを推定するエンコーダ・デコーダ変換アーキテクチャを提案する。
我々は、Human3.6M、CMU Panoptic、Occlusion-Personsの3つのベンチマーク公開データセットで実験を行った。
論文 参考訳(メタデータ) (2023-12-28T16:30:05Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTectionは、単一の画像から3Dオブジェクトを検出する最先端の方法である。
拡散モデルを微調整し、単一の画像に条件付けされた新しいビュー合成を行う。
さらに、検出監視により、ターゲットデータ上でモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-07T23:46:41Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
本稿では,RGB-Dシーケンスからのリアルタイム意味マッピングのための新しい手法を提案する。
2DニューラルネットワークとSLAMシステムに基づく3Dネットワークと3D占有マッピングを組み合わせる。
本システムは,2D-3Dネットワークベースシステムにおいて,最先端のセマンティックマッピング品質を実現する。
論文 参考訳(メタデータ) (2023-06-28T22:36:44Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。