論文の概要: Partial Distribution Matching via Partial Wasserstein Adversarial Networks
- arxiv url: http://arxiv.org/abs/2409.10499v1
- Date: Mon, 16 Sep 2024 17:41:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 14:38:40.455203
- Title: Partial Distribution Matching via Partial Wasserstein Adversarial Networks
- Title(参考訳): 部分ワッサーシュタイン逆数ネットワークによる部分分布マッチング
- Authors: Zi-Ming Wang, Nan Xue, Ling Lei, Rebecka Jörnsten, Gui-Song Xia,
- Abstract要約: 本稿では,2つの確率分布の整合性を求める基本的機械学習問題である分布マッチング(DM)問題について検討する。
提案手法は, 部分分布マッチング (PDM) と呼ばれる緩和された定式化に基づいており, 完全に一致するのではなく, 少数の分布に一致することを目指している。
実験結果から,提案したPWANは,最先端の手法と同等あるいは同等の精度で,極めて堅牢なマッチング結果が得られることが確認された。
- 参考スコア(独自算出の注目度): 35.48994933353969
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies the problem of distribution matching (DM), which is a fundamental machine learning problem seeking to robustly align two probability distributions. Our approach is established on a relaxed formulation, called partial distribution matching (PDM), which seeks to match a fraction of the distributions instead of matching them completely. We theoretically derive the Kantorovich-Rubinstein duality for the partial Wasserstain-1 (PW) discrepancy, and develop a partial Wasserstein adversarial network (PWAN) that efficiently approximates the PW discrepancy based on this dual form. Partial matching can then be achieved by optimizing the network using gradient descent. Two practical tasks, point set registration and partial domain adaptation are investigated, where the goals are to partially match distributions in 3D space and high-dimensional feature space respectively. The experiment results confirm that the proposed PWAN effectively produces highly robust matching results, performing better or on par with the state-of-the-art methods.
- Abstract(参考訳): 本稿では,2つの確率分布の整合性を求める基本的機械学習問題である分布マッチング(DM)問題について検討する。
提案手法は, 部分分布マッチング (PDM) と呼ばれる緩和された定式化に基づいており, 完全に一致するのではなく, 少数の分布に一致することを目指している。
理論的には、部分的なワッサーステン1(PW)差分に対するカントロビッチ・ルビンシュタイン双対性を導出し、この双対形式に基づいてPW差分を効率的に近似する部分的なワッサーステン対向ネットワーク(PWAN)を開発する。
その後、勾配勾配勾配を用いてネットワークを最適化することで部分マッチングを実現することができる。
点集合登録と部分領域適応という2つの実践的課題について検討し, 3次元空間と高次元特徴空間の分布を部分的に一致させることを目標とした。
実験の結果,提案したPWANは,最先端の手法と同等あるいは同等の精度で,極めて堅牢なマッチング結果が得られることを確認した。
関連論文リスト
- Sliced Wasserstein with Random-Path Projecting Directions [49.802024788196434]
本稿では,モンテカルロ予想推定のための高速サンプリングを行う最適化自由スライシング分布を提案する。
我々はランダムパススライシング分布(RPSD)とスライスされたワッサースタインの2つの変種、すなわちランダムパススライシングワッサースタイン(RPSW)とIWRPSW(Importance Weighted Random-Path Projection Sliced Wasserstein)を導出する。
論文 参考訳(メタデータ) (2024-01-29T04:59:30Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Partial Wasserstein Adversarial Network for Non-rigid Point Set
Registration [33.70389309762202]
2つの点集合が与えられた場合、登録の問題は一方が他方と一致する変換を回復することである。
登録問題を部分分布マッチング(PDM)問題として定式化し,その目的は距離空間内の点集合で表される分布を部分的に一致させることである。
本稿では,ニューラルネットワークによるPW差分を近似し,勾配降下により最小化できる部分的ワッサーシュタイン対向ネットワーク(PWAN)を提案する。
論文 参考訳(メタデータ) (2022-03-04T10:23:48Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
そこで我々は, DRE-inftyを提案する。 DRE-inftyは, 密度比推定(DRE)を, より簡単なサブプロブレムに還元する手法である。
モンテカルロ法にインスパイアされ、中間ブリッジ分布の無限連続体を介して2つの分布の間を滑らかに補間する。
提案手法は,複雑な高次元データセット上での相互情報推定やエネルギーベースモデリングなどの下流タスクにおいて良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-22T06:26:29Z) - Distributional Sliced Embedding Discrepancy for Incomparable
Distributions [22.615156512223766]
Gromov-Wasserstein (GW) 距離は多様体学習とクロスドメイン学習の鍵となるツールである。
本稿では,分散スライシング,埋め込み,スライスされた分布間の閉形式ワッサーシュタイン距離の計算という2つの計算分布を比較する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-04T15:11:30Z) - Learning to Match Distributions for Domain Adaptation [116.14838935146004]
本稿では,ドメイン間分布マッチングを自動的に学習する学習 to Match (L2M)を提案する。
L2Mは、メタネットワークを用いてデータ駆動方式で分布整合損失を学習することにより、誘導バイアスを低減する。
公開データセットの実験は、SOTA法よりもL2Mの方が優れていることを裏付けている。
論文 参考訳(メタデータ) (2020-07-17T03:26:13Z) - Joint Wasserstein Distribution Matching [89.86721884036021]
JDM問題(Joint Distribution matching)は、2つのドメインの関節分布を一致させるために双方向マッピングを学習することを目的としており、多くの機械学習およびコンピュータビジョンアプリケーションで発生している。
2つの領域における関節分布のワッサーシュタイン距離を最小化することにより、JDM問題に対処することを提案する。
そこで我々は,難解な問題を簡単な最適化問題に還元する重要な定理を提案し,その解法を開発した。
論文 参考訳(メタデータ) (2020-03-01T03:39:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。