Partial Distribution Matching via Partial Wasserstein Adversarial Networks
- URL: http://arxiv.org/abs/2409.10499v1
- Date: Mon, 16 Sep 2024 17:41:45 GMT
- Title: Partial Distribution Matching via Partial Wasserstein Adversarial Networks
- Authors: Zi-Ming Wang, Nan Xue, Ling Lei, Rebecka Jörnsten, Gui-Song Xia,
- Abstract summary: This paper studies the problem of distribution matching (DM), which is a fundamental machine learning problem seeking to robustly align two probability distributions.
Our approach is established on a relaxed formulation, called partial distribution matching (PDM), which seeks to match a fraction of the distributions instead of matching them completely.
Experiment results confirm that the proposed PWAN effectively produces highly robust matching results, performing better or on par with the state-of-the-art methods.
- Score: 35.48994933353969
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies the problem of distribution matching (DM), which is a fundamental machine learning problem seeking to robustly align two probability distributions. Our approach is established on a relaxed formulation, called partial distribution matching (PDM), which seeks to match a fraction of the distributions instead of matching them completely. We theoretically derive the Kantorovich-Rubinstein duality for the partial Wasserstain-1 (PW) discrepancy, and develop a partial Wasserstein adversarial network (PWAN) that efficiently approximates the PW discrepancy based on this dual form. Partial matching can then be achieved by optimizing the network using gradient descent. Two practical tasks, point set registration and partial domain adaptation are investigated, where the goals are to partially match distributions in 3D space and high-dimensional feature space respectively. The experiment results confirm that the proposed PWAN effectively produces highly robust matching results, performing better or on par with the state-of-the-art methods.
Related papers
- Sliced Wasserstein with Random-Path Projecting Directions [49.802024788196434]
We propose an optimization-free slicing distribution that provides a fast sampling for the Monte Carlo estimation of expectation.
We derive the random-path slicing distribution (RPSD) and two variants of sliced Wasserstein, i.e., the Random-Path Projection Sliced Wasserstein (RPSW) and the Importance Weighted Random-Path Projection Sliced Wasserstein (IWRPSW)
arXiv Detail & Related papers (2024-01-29T04:59:30Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Partial Wasserstein Adversarial Network for Non-rigid Point Set
Registration [33.70389309762202]
Given two point sets, the problem of registration is to recover a transformation that matches one set to the other.
We formulate the registration problem as a partial distribution matching (PDM) problem, where the goal is to partially match the distributions represented by point sets in a metric space.
We propose a partial Wasserstein adversarial network (PWAN), which is able to approximate the PW discrepancy by a neural network, and minimize it by gradient descent.
arXiv Detail & Related papers (2022-03-04T10:23:48Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
We propose DRE-infty, a divide-and-conquer approach to reduce Density ratio estimation (DRE) to a series of easier subproblems.
Inspired by Monte Carlo methods, we smoothly interpolate between the two distributions via an infinite continuum of intermediate bridge distributions.
We show that our approach performs well on downstream tasks such as mutual information estimation and energy-based modeling on complex, high-dimensional datasets.
arXiv Detail & Related papers (2021-11-22T06:26:29Z) - Distributional Sliced Embedding Discrepancy for Incomparable
Distributions [22.615156512223766]
Gromov-Wasserstein (GW) distance is a key tool for manifold learning and cross-domain learning.
We propose a novel approach for comparing two computation distributions, that hinges on the idea of distributional slicing, embeddings, and on computing the closed-form Wasserstein distance between the sliced distributions.
arXiv Detail & Related papers (2021-06-04T15:11:30Z) - Learning to Match Distributions for Domain Adaptation [116.14838935146004]
This paper proposes Learning to Match (L2M) to automatically learn the cross-domain distribution matching.
L2M reduces the inductive bias by using a meta-network to learn the distribution matching loss in a data-driven way.
Experiments on public datasets substantiate the superiority of L2M over SOTA methods.
arXiv Detail & Related papers (2020-07-17T03:26:13Z) - Joint Wasserstein Distribution Matching [89.86721884036021]
Joint distribution matching (JDM) problem, which aims to learn bidirectional mappings to match joint distributions of two domains, occurs in many machine learning and computer vision applications.
We propose to address JDM problem by minimizing the Wasserstein distance of the joint distributions in two domains.
We then propose an important theorem to reduce the intractable problem into a simple optimization problem, and develop a novel method to solve it.
arXiv Detail & Related papers (2020-03-01T03:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.