Distributional Sliced Embedding Discrepancy for Incomparable
Distributions
- URL: http://arxiv.org/abs/2106.02542v1
- Date: Fri, 4 Jun 2021 15:11:30 GMT
- Title: Distributional Sliced Embedding Discrepancy for Incomparable
Distributions
- Authors: Mokhtar Z. Alaya, Gilles Gasso, Maxime Berar, Alain Rakotomamonjy
- Abstract summary: Gromov-Wasserstein (GW) distance is a key tool for manifold learning and cross-domain learning.
We propose a novel approach for comparing two computation distributions, that hinges on the idea of distributional slicing, embeddings, and on computing the closed-form Wasserstein distance between the sliced distributions.
- Score: 22.615156512223766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gromov-Wasserstein (GW) distance is a key tool for manifold learning and
cross-domain learning, allowing the comparison of distributions that do not
live in the same metric space. Because of its high computational complexity,
several approximate GW distances have been proposed based on entropy
regularization or on slicing, and one-dimensional GW computation. In this
paper, we propose a novel approach for comparing two incomparable
distributions, that hinges on the idea of distributional slicing, embeddings,
and on computing the closed-form Wasserstein distance between the sliced
distributions. We provide a theoretical analysis of this new divergence, called
distributional sliced embedding (DSE) discrepancy, and we show that it
preserves several interesting properties of GW distance including
rotation-invariance. We show that the embeddings involved in DSE can be
efficiently learned. Finally, we provide a large set of experiments
illustrating the behavior of DSE as a divergence in the context of generative
modeling and in query framework.
Related papers
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - Computing Marginal and Conditional Divergences between Decomposable
Models with Applications [7.89568731669979]
We propose an approach to compute the exact alpha-beta divergence between any marginal or conditional distribution of two decomposable models.
We show how our method can be used to analyze distributional changes by first applying it to a benchmark image dataset.
Based on our framework, we propose a novel way to quantify the error in contemporary superconducting quantum computers.
arXiv Detail & Related papers (2023-10-13T14:17:25Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Distributed Variational Inference for Online Supervised Learning [15.038649101409804]
This paper develops a scalable distributed probabilistic inference algorithm.
It applies to continuous variables, intractable posteriors and large-scale real-time data in sensor networks.
arXiv Detail & Related papers (2023-09-05T22:33:02Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Decentralized Entropic Optimal Transport for Distributed Distribution Comparison [28.122302344024387]
We propose a novel decentralized entropic optimal transport (DEOT) method, which provides a communication-efficient and privacy-preserving solution to this problem.
In particular, we design a mini-batch randomized block-coordinate descent scheme to optimize the DEOT distance in its dual form.
We show that the proposed MRBCD scheme and kernel approximation method also apply to entropic Gromov-Wasserstein distance.
arXiv Detail & Related papers (2023-01-28T02:47:42Z) - Cycle Consistent Probability Divergences Across Different Spaces [38.43511529063335]
Discrepancy measures between probability distributions are at the core of statistical inference and machine learning.
This work proposes a novel unbalanced Monge optimal transport formulation for matching, up to isometries, distributions on different spaces.
arXiv Detail & Related papers (2021-11-22T16:35:58Z) - Kernel distance measures for time series, random fields and other
structured data [71.61147615789537]
kdiff is a novel kernel-based measure for estimating distances between instances of structured data.
It accounts for both self and cross similarities across the instances and is defined using a lower quantile of the distance distribution.
Some theoretical results are provided for separability conditions using kdiff as a distance measure for clustering and classification problems.
arXiv Detail & Related papers (2021-09-29T22:54:17Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
We introduce the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations.
Our main contribution is to propose a sweep line algorithm to compute AE emphexactly in log-quadratic time, where a naive implementation would be cubic.
We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations.
arXiv Detail & Related papers (2020-02-05T03:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.