DrLLM: Prompt-Enhanced Distributed Denial-of-Service Resistance Method with Large Language Models
- URL: http://arxiv.org/abs/2409.10561v2
- Date: Wed, 18 Sep 2024 01:18:48 GMT
- Title: DrLLM: Prompt-Enhanced Distributed Denial-of-Service Resistance Method with Large Language Models
- Authors: Zhenyu Yin, Shang Liu, Guangyuan Xu,
- Abstract summary: We propose DrLLM, which aims to mine anomalous traffic information in zero-shot scenarios through Large Language Models (LLMs)
To bridge the gap between DrLLM and existing approaches, we embed the global and local information of the traffic data into the reasoning paradigm and design three modules, namely Knowledge Embedding, Token Embedding, and Progressive Role Reasoning.
Our ablation experiments demonstrate the applicability of DrLLM in zero-shot scenarios and further demonstrate the potential of LLMs in the network domains.
- Score: 4.171555557592296
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The increasing number of Distributed Denial of Service (DDoS) attacks poses a major threat to the Internet, highlighting the importance of DDoS mitigation. Most existing approaches require complex training methods to learn data features, which increases the complexity and generality of the application. In this paper, we propose DrLLM, which aims to mine anomalous traffic information in zero-shot scenarios through Large Language Models (LLMs). To bridge the gap between DrLLM and existing approaches, we embed the global and local information of the traffic data into the reasoning paradigm and design three modules, namely Knowledge Embedding, Token Embedding, and Progressive Role Reasoning, for data representation and reasoning. In addition we explore the generalization of prompt engineering in the cybersecurity domain to improve the classification capability of DrLLM. Our ablation experiments demonstrate the applicability of DrLLM in zero-shot scenarios and further demonstrate the potential of LLMs in the network domains. DrLLM implementation code has been open-sourced at https://github.com/liuup/DrLLM.
Related papers
- A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendation aims to mine and transfer users' sequential preferences across different domains.
We propose a novel framework named URLLM, which aims to improve the CDSR performance by exploring the User Retrieval approach.
arXiv Detail & Related papers (2024-06-05T09:19:54Z) - Empowering Source-Free Domain Adaptation with MLLM-driven Curriculum Learning [5.599218556731767]
Source-Free Domain Adaptation (SFDA) aims to adapt a pre-trained source model to a target domain using only unlabeled target data.
Reliability-based Curriculum Learning (RCL) integrates multiple MLLMs for knowledge exploitation via pseudo-labeling in SFDA.
arXiv Detail & Related papers (2024-05-28T17:18:17Z) - Enhancing Information Maximization with Distance-Aware Contrastive
Learning for Source-Free Cross-Domain Few-Shot Learning [55.715623885418815]
Cross-Domain Few-Shot Learning methods require access to source domain data to train a model in the pre-training phase.
Due to increasing concerns about data privacy and the desire to reduce data transmission and training costs, it is necessary to develop a CDFSL solution without accessing source data.
This paper proposes an Enhanced Information Maximization with Distance-Aware Contrastive Learning method to address these challenges.
arXiv Detail & Related papers (2024-03-04T12:10:24Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Using machine learning (ML) and deep learning (DL) models in Intrusion Detection Systems has led to a trust deficit due to their non-transparent decision-making.
This paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data.
Our approach achieves high accuracy with 99.47% in threat detection and provides clear, actionable explanations of its analytical outcomes.
arXiv Detail & Related papers (2024-02-01T18:29:16Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z) - On the Evaluation of User Privacy in Deep Neural Networks using Timing
Side Channel [14.350301915592027]
We identify and report a novel data-dependent timing side-channel leakage (termed Class Leakage) in Deep Learning (DL) implementations.
We demonstrate a practical inference-time attack where an adversary with user privilege and hard-label blackbox access to an ML can exploit Class Leakage.
We develop an easy-to-implement countermeasure by making a constant-time branching operation that alleviates the Class Leakage.
arXiv Detail & Related papers (2022-08-01T19:38:16Z) - Distributed Machine Learning for Wireless Communication Networks:
Techniques, Architectures, and Applications [1.647426214278143]
Distributed machine learning (DML) techniques have been increasingly applied to wireless communications.
The unique features of wireless systems, such as large scale, geographically dispersed deployment, user mobility, and massive amount of data, give rise to new challenges in the design of DML techniques.
This survey bridges the gap by providing a contemporary and comprehensive survey of DML techniques with a focus on wireless networks.
arXiv Detail & Related papers (2020-12-02T19:53:32Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.