A clustering adaptive Gaussian process regression method: response patterns based real-time prediction for nonlinear solid mechanics problems
- URL: http://arxiv.org/abs/2409.10572v1
- Date: Sun, 15 Sep 2024 07:30:33 GMT
- Title: A clustering adaptive Gaussian process regression method: response patterns based real-time prediction for nonlinear solid mechanics problems
- Authors: Ming-Jian Li, Yanping Lian, Zhanshan Cheng, Lehui Li, Zhidong Wang, Ruxin Gao, Daining Fang,
- Abstract summary: This study presents a clustering adaptive Gaussian process regression (CAG) method aiming for real-time prediction for nonlinear structural responses in solid mechanics.
It is a data-driven machine learning method featuring a small sample size, high accuracy, and high efficiency, leveraging nonlinear structural response patterns.
The proposed method can offer predictions within a second and attain high precision with only about 20 samples within the context of this study.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerical simulation is powerful to study nonlinear solid mechanics problems. However, mesh-based or particle-based numerical methods suffer from the common shortcoming of being time-consuming, particularly for complex problems with real-time analysis requirements. This study presents a clustering adaptive Gaussian process regression (CAG) method aiming for real-time prediction for nonlinear structural responses in solid mechanics. It is a data-driven machine learning method featuring a small sample size, high accuracy, and high efficiency, leveraging nonlinear structural response patterns. Similar to the traditional Gaussian process regression (GPR) method, it operates in offline and online stages. In the offline stage, an adaptive sample generation technique is introduced to cluster datasets into distinct patterns for demand-driven sample allocation. This ensures comprehensive coverage of the critical samples for the solution space of interest. In the online stage, following the divide-and-conquer strategy, a pre-prediction classification categorizes problems into predefined patterns sequentially predicted by the trained multi-pattern Gaussian process regressor. In addition, dimension reduction and restoration techniques are employed in the proposed method to enhance its efficiency. A set of problems involving material, geometric, and boundary condition nonlinearities is presented to demonstrate the CAG method's abilities. The proposed method can offer predictions within a second and attain high precision with only about 20 samples within the context of this study, outperforming the traditional GPR using uniformly distributed samples for error reductions ranging from 1 to 3 orders of magnitude. The CAG method is expected to offer a powerful tool for real-time prediction of nonlinear solid mechanical problems and shed light on the complex nonlinear structural response pattern.
Related papers
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - MMGP: a Mesh Morphing Gaussian Process-based machine learning method for
regression of physical problems under non-parameterized geometrical
variability [0.30693357740321775]
We propose a machine learning method that do not rely on graph neural networks.
The proposed methodology can easily deal with large meshes without the need for explicit shape parameterization.
arXiv Detail & Related papers (2023-05-22T09:50:15Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
Multi-fidelity modelling enables accurate inference even when only a small set of accurate data is available.
By combining the realizations of the high-fidelity model with one or more low-fidelity models, the multi-fidelity method can make accurate predictions of quantities of interest.
This paper proposes a new dimension reduction framework based on rotated multi-fidelity Gaussian process regression and a Bayesian active learning scheme.
arXiv Detail & Related papers (2022-04-11T01:20:35Z) - Non-linear manifold ROM with Convolutional Autoencoders and Reduced
Over-Collocation method [0.0]
Non-affine parametric dependencies, nonlinearities and advection-dominated regimes of the model of interest can result in a slow Kolmogorov n-width decay.
We implement the non-linear manifold method introduced by Carlberg et al [37] with hyper-reduction achieved through reduced over-collocation and teacher-student training of a reduced decoder.
We test the methodology on a 2d non-linear conservation law and a 2d shallow water models, and compare the results obtained with a purely data-driven method for which the dynamics is evolved in time with a long-short term memory network
arXiv Detail & Related papers (2022-03-01T11:16:50Z) - The Neural Network shifted-Proper Orthogonal Decomposition: a Machine
Learning Approach for Non-linear Reduction of Hyperbolic Equations [0.0]
In this work we approach the problem of automatically detecting the correct pre-processing transformation in a statistical learning framework.
The purely data-driven method allowed us to generalise the existing approaches of linear subspace manipulation to non-linear hyperbolic problems with unknown advection fields.
The proposed algorithm has been validated against simple test cases to benchmark its performances and later successfully applied to a multiphase simulation.
arXiv Detail & Related papers (2021-08-14T15:13:35Z) - Local approximate Gaussian process regression for data-driven
constitutive laws: Development and comparison with neural networks [0.0]
We show how to use local approximate process regression to predict stress outputs at particular strain space locations.
A modified Newton-Raphson approach is proposed to accommodate for the local nature of the laGPR approximation when solving the global structural problem in a FE setting.
arXiv Detail & Related papers (2021-05-07T14:49:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.